Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naomi L. Ward is active.

Publication


Featured researches published by Naomi L. Ward.


Nature Biotechnology | 2002

Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis

John F. Heidelberg; Ian T. Paulsen; Karen E. Nelson; Eric J. Gaidos; William C. Nelson; Timothy D. Read; Jonathan A. Eisen; Rekha Seshadri; Naomi L. Ward; Barbara Methe; Rebecca A. Clayton; Terry Meyer; Alexandre S. Tsapin; James Scott; Maureen J. Beanan; Lauren M Brinkac; Sean C. Daugherty; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Daniel H. Haft; James F. Kolonay; Ramana Madupu; Jeremy Peterson; Lowell Umayam; Owen White; Alex M. Wolf; Jessica Vamathevan; Janice Weidman; Marjorie Impraim

Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803–base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613–base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organisms complex electron transport systems and metal ion–reducing capabilities.


Applied and Environmental Microbiology | 2009

Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils

Naomi L. Ward; Jean F. Challacombe; Peter H. Janssen; Bernard Henrissat; Pedro M. Coutinho; Martin Wu; Gary Xie; Daniel H. Haft; Michelle Sait; Jonathan H. Badger; Ravi D. Barabote; Brent Bradley; Thomas Brettin; Lauren M. Brinkac; David Bruce; Todd Creasy; Sean C. Daugherty; Tanja Davidsen; Robert T. DeBoy; J. Chris Detter; Robert J. Dodson; A. Scott Durkin; Anuradha Ganapathy; Michelle Gwinn-Giglio; Cliff Han; Hoda Khouri; Hajnalka Kiss; Sagar Kothari; Ramana Madupu; Karen E. Nelson

ABSTRACT The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Complete genome sequence of the Q-fever pathogen Coxiella burnetii.

Rekha Seshadri; Ian T. Paulsen; Jonathan A. Eisen; Timothy D. Read; Karen E. Nelson; William C. Nelson; Naomi L. Ward; Hervé Tettelin; Tanja Davidsen; Maureen J. Beanan; Robert T. DeBoy; Sean C. Daugherty; Lauren M. Brinkac; Ramana Madupu; Robert J. Dodson; Hoda Khouri; K. Lee; Heather A. Carty; David Scanlan; Robert A. Heinzen; Herbert A. Thompson; James E. Samuel; Claire M. Fraser; John F. Heidelberg

The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.


Nature | 2004

Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment

Mary Ann Moran; Alison Buchan; José M. González; John F. Heidelberg; William B. Whitman; Ronald P. Kiene; James R. Henriksen; Gary M. King; Robert Belas; Clay Fuqua; Lauren M. Brinkac; Matthew S. Lewis; Shivani Johri; Bruce Weaver; Grace Pai; Jonathan A. Eisen; Elisha Rahe; Wade M. Sheldon; Wenying Ye; Todd R. Miller; Jane M. Carlton; David A. Rasko; Ian T. Paulsen; Qinghu Ren; Sean C. Daugherty; Robert T. DeBoy; Robert J. Dodson; A. Scott Durkin; Ramana Madupu; William C. Nelson

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise ∼10–20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.


PLOS Biology | 2004

Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath)

Naomi L. Ward; Øivind Larsen; James Sakwa; Live J. Bruseth; Hoda Khouri; A. Scott Durkin; George Dimitrov; Lingxia Jiang; David Scanlan; Katherine H. Kang; Matthew Lewis; Karen E. Nelson; Barbara A. Methé; Martin Wu; John F. Heidelberg; Ian T. Paulsen; Derrick E. Fouts; Jacques Ravel; Hervé Tettelin; Qinghu Ren; Timothy D. Read; Robert T. DeBoy; Rekha Seshadri; Harald B. Jensen; Nils-Kåre Birkeland; William C. Nelson; Robert J. Dodson; Svenn Helge Grindhaug; Ingeborg Holt; Ingvar Eidhammer

Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase) and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath) deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for genetic components that may have biotechnological potential.


Applied and Environmental Microbiology | 2006

Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts.

Kevin Penn; Dongying Wu; Jonathan A. Eisen; Naomi L. Ward

ABSTRACT Although microbes associated with shallow-water corals have been reported, deepwater coral microbes are poorly characterized. A cultivation-independent analysis of Alaskan seamount octocoral microflora showed that Proteobacteria (classes Alphaproteobacteria and Gammaproteobacteria), Firmicutes, Bacteroidetes, and Acidobacteria dominate and vary in abundance. More sampling is needed to understand the basis and significance of this variation.


Archive | 2004

The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus genera Brocadia, Kuenenia and Scalindua

Naomi L. Ward; James T. Staley; John A. Fuerst; Stephen Giovannoni; Heinz Schlesner; Eiko Stackebrandt

The order Planctomycetales comprises a remarkable group of budding bacteria. They and their nearest relatives, the chlamydiae (Weisburg et al., 1986; see The Genus Chlamydia–Medical in this Volume), are the only known cell-wall containing bacteria that lack peptidoglycan. Furthermore, the planctomycetes are morphologically distinctive because of their budding division, their spherical to ovoid cells with crateriform pits (Figs. 1 and 2), and the nonprosthecate appendages (stalks) produced by some members of the group (Fig. 3). Multicellular aggregates or rosettes are formed by some species that produce polar holdfasts (Fig. 3). One genus, Isosphaera, is a multicellular filamentous bacterium that moves by gliding. Other motile members of the group produce flagella. A relatively recent addition to the morphological oddity of the planctomycetes is the discovery of cellular compartmentalization, posing a challenge to the traditionally held view of the prokaryote:eukaryote dichotomy (Fuerst and Webb, 1991; Lindsay et al., 1997; Lindsay et al., 2001). Knowledge of the order is limited owing to the relatively few species that have been obtained in pure culture and characterized. However, through the application of molecular microbial ecology techniques over the last 10 years, it has become apparent that planctomycetes are ubiquitous in a wide range of terrestrial and aquatic environments; the physiological diversity underlying this geographic ubiquity has not yet been fully explored. The availability of genome sequence data should provide a valuable resource for the future investigation of planctomycete biology and promises to reveal previously unknown aspects of these unique organisms.


Extremophiles | 2009

Characterization of the intestinal microbiota of two Antarctic notothenioid fish species.

Naomi L. Ward; Blaire Steven; Kevin Penn; Barbara A. Methé; William Detrich

The fish fauna of the Southern Ocean is dominated by species of the perciform suborder Notothenioidei, which constitute 46% of fish species and 90% of biomass. Notothenioids have undergone rapid morphological and ecological diversification and developed physiological adaptations to a cold, highly oxygenated environment. Microbes inhabiting animal intestines include those that perform essential nutritional functions, but notothenioid gut microbial communities have not been investigated using cultivation-independent approaches. We analyzed bacterial 16S rRNA gene sequences obtained from the intestinal tract of Notothenia coriiceps and Chaenocephalus aceratus, which differ in their pelagic distribution and feeding strategies. Both samples showed dominance of Gammaproteobacteria (mostly Vibrionaceae), as has been reported for temperate teleost species. Both samples showed low diversity relative to that reported for other fish microbiota studies, with C. aceratus containing fewer OTUs than N. coriiceps. Despite the small sample size of this preliminary study, our findings suggest that Antarctic notothenioids carry a gut microbiota similar in composition to that of temperate fish, but exhibiting lower species-level diversity. The omnivorous N. coriiceps individual exhibited greater diversity than the exclusively carnivorous C. aceratus individual, which may indicate that increasing herbivory in fish leads to gut microbe diversification, as found in mammals. Lastly, we detected members of taxa containing known microbial pathogens, which have not been previously reported in Antarctic notothenioid fish.


PLOS ONE | 2009

Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum

Dongying Wu; Jason Raymond; Martin Wu; Sourav Chatterji; Qinghu Ren; Joel E. Graham; Donald A. Bryant; Frank T. Robb; Albert S. Colman; Luke J. Tallon; Jonathan H. Badger; Ramana Madupu; Naomi L. Ward; Jonathan A. Eisen

In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacteriums thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced.


PLOS ONE | 2009

The complete genome of Teredinibacter turnerae T7901: An intracellular endosymbiont of marine wood-boring bivalves (shipworms)

Joyce C. Yang; Ramana Madupu; A. Scott Durkin; Nathan A. Ekborg; Chandra Sekhar Pedamallu; Jessica B. Hostetler; Diana Radune; Bradley S. Toms; Bernard Henrissat; Pedro M. Coutinho; Sandra Schwarz; Lauren Field; Amaro E. Trindade-Silva; Carlos A. G. Soares; Sherif I. Elshahawi; Amro Hanora; Eric W. Schmidt; Margo G. Haygood; Janos Posfai; Jack S. Benner; Catherine L. Madinger; John Nove; Brian P. Anton; Kshitiz Chaudhary; Jeremy M. Foster; Alex Holman; Sanjay Kumar; Philip A. Lessard; Yvette A. Luyten; Barton E. Slatko

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the hosts nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.

Collaboration


Dive into the Naomi L. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramana Madupu

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Hoda Khouri

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Robert J. Dodson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Haft

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Scott Durkin

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Ian T. Paulsen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge