Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan N. Glickman is active.

Publication


Featured researches published by Jonathan N. Glickman.


Science | 2013

The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis

Patrick M. Smith; Michael R. Howitt; Nicolai S. Panikov; Monia Michaud; Carey Ann Gallini; Mohammad Bohlooly-Y; Jonathan N. Glickman; Wendy S. Garrett

Protecting the Guts Regulatory T cells (Tregs) in the gut are important sentinels in maintaining the peace between our gut and its trillions of resident bacteria and have been shown to be regulated by specific strains of bacteria in mouse models. Smith et al. (p. 569, published online 4 July; see the Perspective by Bollrath and Powrie) asked whether metabolite(s) generated by resident bacterial species may regulate Tregs in the gut. Indeed, short-chain fatty acids (SCFAs), bacterial fermentation products of dietary fibers produced by a range of bacteria, restored colonic Treg numbers in mice devoid of a gut microbiota and increased Treg numbers in colonized mice. The effects of SCFAs on Tregs were mediated through GPCR43, a receptor for SCFAs, which is expressed on colonic Tregs. Mice fed SCFAs were protected against experimentally induced colitis in a manner that was dependent on GPR43-expressing Tregs. Bacterial fermentation products regulate the number and function of regulatory T cells in the mouse colon. [Also see Perspective by Bollrath and Powrie] Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.


Cell | 2008

XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease

Arthur Kaser; Ann-Hwee Lee; Andre Franke; Jonathan N. Glickman; Sebastian Zeissig; Herbert Tilg; Edward E. S. Nieuwenhuis; Darren E. Higgins; Stefan Schreiber; Laurie H. Glimcher; Richard S. Blumberg

Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal immunity to the intestinal microbiota. The transcription factor XBP1, a key component of the endoplasmic reticulum (ER) stress response, is required for development and maintenance of secretory cells and linked to JNK activation. We hypothesized that a stressful environmental milieu in a rapidly proliferating tissue might instigate a proinflammatory response. We report that Xbp1 deletion in intestinal epithelial cells (IECs) results in spontaneous enteritis and increased susceptibility to induced colitis secondary to both Paneth cell dysfunction and an epithelium that is overly reactive to inducers of IBD such as bacterial products (flagellin) and TNFalpha. An association of XBP1 variants with both forms of human IBD (Crohns disease and ulcerative colitis) was identified and replicated (rs35873774; p value 1.6 x 10(-5)) with novel, private hypomorphic variants identified as susceptibility factors. Hence, intestinal inflammation can originate solely from XBP1 abnormalities in IECs, thus linking cell-specific ER stress to the induction of organ-specific inflammation.


The New England Journal of Medicine | 2008

Gene expression in fixed tissues and outcome in hepatocellular carcinoma.

Yujin Hoshida; Augusto Villanueva; Masahiro Kobayashi; Judit Peix; Derek Y. Chiang; Amy L. Camargo; Supriya Gupta; Jamie Moore; Matthew J. Wrobel; Jim Lerner; Michael R. Reich; Jennifer A. Chan; Jonathan N. Glickman; Kenji Ikeda; Masaji Hashimoto; Goro Watanabe; Maria G. Daidone; Sasan Roayaie; Myron Schwartz; Swan Thung; Helga B. Salvesen; Stacey Gabriel; Vincenzo Mazzaferro; Jordi Bruix; Scott L. Friedman; Josep M. Llovet; Todd R. Golub

BACKGROUND It is a challenge to identify patients who, after undergoing potentially curative treatment for hepatocellular carcinoma, are at greatest risk for recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissue. METHODS We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed, paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. RESULTS The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of tissue samples from 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (P=0.04). CONCLUSIONS We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlated with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma.


Science | 2012

Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function

Torsten Olszak; Dingding An; Sebastian Zeissig; Miguel Pinilla Vera; Julia Richter; Andre Franke; Jonathan N. Glickman; Reiner Siebert; Rebecca M. Baron; Dennis L. Kasper; Richard S. Blumberg

Microbes: Early and Often Epidemiological studies have suggested that the increase in the incidence of asthma and other inflammatory diseases seen in many parts of the world may be due to a reduced exposure to microbes during early childhood. Olszak et al. (p. 489, published online 22 March) now show that commensal microflora help to regulate the numbers and functions of natural killer T (NKT) cells in the colon and lung in mice. Germ-free mice had elevated numbers of NKT cells in these tissues and were more susceptible to chemically induced colitis and allergic asthma. Neonatal recolonization of germ-free mice with microflora prevented enhanced colitis and asthma sensitivity; however, exposure of adult mice to these conditions was not effective. Thus, early exposure to microbes has important, lasting effects on the immune systems sensitivity to inflammation. Early exposure of germ-free mice to microbes keeps later inflammation in check by modulating immune cells. Exposure to microbes during early childhood is associated with protection from immune-mediated diseases such as inflammatory bowel disease (IBD) and asthma. Here, we show that in germ-free (GF) mice, invariant natural killer T (iNKT) cells accumulate in the colonic lamina propria and lung, resulting in increased morbidity in models of IBD and allergic asthma as compared with that of specific pathogen-free mice. This was associated with increased intestinal and pulmonary expression of the chemokine ligand CXCL16, which was associated with increased mucosal iNKT cells. Colonization of neonatal—but not adult—GF mice with a conventional microbiota protected the animals from mucosal iNKT accumulation and related pathology. These results indicate that age-sensitive contact with commensal microbes is critical for establishing mucosal iNKT cell tolerance to later environmental exposures.


Cell | 2007

Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system.

Wendy S. Garrett; Graham M. Lord; Shivesh Punit; Geanncarlo Lugo-Villarino; Sarkis K. Mazmanian; Susumu Ito; Jonathan N. Glickman; Laurie H. Glimcher

Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-alpha production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD.


Nature Medicine | 2009

Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice

Jian Liu; Adeline Divoux; Jiusong Sun; Jie Zhang; Karine Clément; Jonathan N. Glickman; Galina K. Sukhova; Paul J. Wolters; Juan Du; Cem Z. Görgün; Alessandro Doria; Peter Libby; Richard S. Blumberg; Barbara B. Kahn; Gökhan S. Hotamisligil; Guo-Ping Shi

Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-γ (IFN-γ), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders.


Journal of Experimental Medicine | 2002

The Transcription Factor T-bet Regulates Mucosal T Cell Activation in Experimental Colitis and Crohn's Disease

Markus F Neurath; B. Weigmann; Susetta Finotto; Jonathan N. Glickman; Edward E. S. Nieuwenhuis; Hideki Iijima; Atsushi Mizoguchi; Emiko Mizoguchi; Jonas Mudter; Peter R. Galle; Atul K. Bhan; F. Autschbach; Brandon M. Sullivan; Susanne J. Szabo; Laurie H. Glimcher; Richard S. Blumberg

The balance between pro and antiinflammatory cytokines secreted by T cells regulates both the initiation and perpetuation of inflammatory bowel diseases (IBD). In particular, the balance between interferon (IFN)-γ/interleukin (IL)-4 and transforming growth factor (TGF)-β activity controls chronic intestinal inflammation. However, the molecular pathways that evoke these responses are not well understood. Here, we describe a critical role for the transcription factor T-bet in controlling the mucosal cytokine balance and clinical disease. We studied the expression and function of T-bet in patients with IBD and in mucosal T cells in various T helper (Th)1- and Th2-mediated animal models of chronic intestinal inflammation by taking advantage of mice that lack T-bet and retroviral transduction techniques, respectively. Whereas retroviral transduction of T-bet in CD62L+ CD4+ T cells exacerbated colitis in reconstituted SCID mice, T-bet–deficient T cells failed to induce colitis in adoptive transfer experiments suggesting that overexpression of T-bet is essential and sufficient to promote Th1-mediated colitis in vivo. Furthermore, T-bet–deficient CD62L− CD4+ T cells showed enhanced protective functions in Th1-mediated colitis and exhibited increased TGF-β signaling suggesting that a T-bet driven pathway of T cell activation controls the intestinal balance between IFN-γ/IL-4 and TGF-β responses and the development of chronic intestinal inflammation in T cell–mediated colitis. Furthermore, TGF-β was found to suppress T-bet expression suggesting a reciprocal relationship between TGF-β and T-bet in mucosal T cells. In summary, our data suggest a key regulatory role of T-bet in the pathogenesis of T cell–mediated colitis. Specific targeting of this pathway may be a promising novel approach for the treatment of patients with Crohns disease and other autoimmune diseases mediated by Th1 T lymphocytes.


Cell Host & Microbe | 2010

Enterobacteriaceae Act in Concert with the Gut Microbiota to Induce Spontaneous and Maternally Transmitted Colitis

Wendy S. Garrett; Carey Ann Gallini; Tanya Yatsunenko; Monia Michaud; Andrea M. DuBois; Mary L. Delaney; Shivesh Punit; Maria Karlsson; Lynn Bry; Jonathan N. Glickman; Jeffrey I. Gordon; Andrew B. Onderdonk; Laurie H. Glimcher

Disruption of homeostasis between the host immune system and the intestinal microbiota leads to inflammatory bowel disease (IBD). Whether IBD is instigated by individual species or disruptions of entire microbial communities remains controversial. We characterized the fecal microbial communities in the recently described T-bet(-/-) ×Rag2(-/-) ulcerative colitis (TRUC) model driven by T-bet deficiency in the innate immune system. 16S rRNA-based analysis of TRUC and Rag2(-/-) mice revealed distinctive communities that correlate with host genotype. The presence of Klebsiella pneumoniae and Proteus mirabilis correlates with colitis in TRUC animals, and these TRUC-derived strains can elicit colitis in Rag2(-/-) and WT adults but require a maternally transmitted endogenous microbial community for maximal intestinal inflammation. Cross-fostering experiments indicated a role for these organisms in maternal transmission of disease. Our findings illustrate how gut microbial communities work in concert with specific culturable colitogenic agents to cause IBD.


Nature Genetics | 2008

Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon

Kevin M. Haigis; Krystle R. Kendall; Yufang Wang; Ann Cheung; Marcia C. Haigis; Jonathan N. Glickman; Michiko Niwa-Kawakita; Alejandro Sweet-Cordero; Judith Sebolt-Leopold; Kevin Shannon; Jeffrey Settleman; Marco Giovannini; Tyler Jacks

Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-RasG12D in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-RasG12D did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.


Journal of Pediatric Gastroenterology and Nutrition | 2007

Differentiating ulcerative colitis from Crohn disease in children and young adults: report of a working group of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the Crohn's and Colitis Foundation of America.

Athos Bousvaros; Donald A. Antonioli; Richard B. Colletti; Marla Dubinsky; Jonathan N. Glickman; Benjamin D. Gold; Anne M. Griffiths; Jevon Gp; Leslie M. Higuchi; Jeffrey S Hyams; Barbara S. Kirschner; Subra Kugathasan; Robert N. Baldassano; Pierre Russo

Background: Studies of pediatric inflammatory bowel disease (IBD) have varied in the criteria used to classify patients as having Crohn disease (CD), ulcerative colitis (UC), or indeterminate colitis (IC). Patients undergoing an initial evaluation for IBD will often undergo a series of diagnostic tests, including barium upper gastrointestinal series with small bowel follow-through, abdominal CT, upper endoscopy, and colonoscopy with biopsies. Other tests performed less frequently include magnetic resonance imaging scans, serological testing, and capsule endoscopy. The large amount of clinical information obtained may make a physician uncertain as to whether to label a patient as having CD or UC. Nevertheless, to facilitate the conduct of epidemiological studies in children, to allow the entry of children into clinical trials, and to allow physicians to more clearly discuss diagnosis with their patients, it is important that clinicians be able to differentiate between CD and UC. Methods: A consensus conference regarding the diagnosis and classification of pediatric IBD was organized by the Crohns and Colitis Foundation of America. The meeting included 10 pediatric gastroenterologists and 4 pediatric pathologists. The primary aim was to determine the utility of endoscopy and histology in establishing the diagnosis of CD and UC. Each member of the group was assigned a topic for review. Topics evaluated included differentiating inflammatory bowel disease from acute self-limited colitis, endoscopic and histological features that allow differentiation between CD and UC, upper endoscopic features seen in both CD and UC, ileal inflammation and “backwash ileitis” in UC, patchiness and rectal sparing in pediatric IBD, periappendiceal inflammation in CD and UC, and definitions of IC. Results: Patients with UC may have histological features such as microscopic inflammation of the ileum, histological gastritis, periappendiceal inflammation, patchiness, and relative rectal sparing at the time of diagnosis. These findings should not prompt the clinician to change the diagnosis from UC to CD. Other endoscopic findings, such as macroscopic cobblestoning, segmental colitis, ileal stenosis and ulceration, perianal disease, and multiple granulomas in the small bowel or colon more strongly suggest a diagnosis of CD. An algorithm is provided to enable the clinician to differentiate more reliably between these 2 entities. Conclusions: The recommendations and algorithm presented here aim to assist the clinician in differentiating childhood UC from CD. We hope the recommendations in this report will reduce variability among practitioners in how they use the terms “ulcerative colitis,” “Crohn disease,” and “indeterminate colitis.” The authors hope that progress being made in genetic, serological, and imaging studies leads to more reliable phenotyping.

Collaboration


Dive into the Jonathan N. Glickman's collaboration.

Top Co-Authors

Avatar

Richard S. Blumberg

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert D. Odze

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Koenraad J. Mortele

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stuart G. Silverman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo R. Ros

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald A. Antonioli

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge