Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monia Michaud is active.

Publication


Featured researches published by Monia Michaud.


Science | 2013

The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis

Patrick M. Smith; Michael R. Howitt; Nicolai S. Panikov; Monia Michaud; Carey Ann Gallini; Mohammad Bohlooly-Y; Jonathan N. Glickman; Wendy S. Garrett

Protecting the Guts Regulatory T cells (Tregs) in the gut are important sentinels in maintaining the peace between our gut and its trillions of resident bacteria and have been shown to be regulated by specific strains of bacteria in mouse models. Smith et al. (p. 569, published online 4 July; see the Perspective by Bollrath and Powrie) asked whether metabolite(s) generated by resident bacterial species may regulate Tregs in the gut. Indeed, short-chain fatty acids (SCFAs), bacterial fermentation products of dietary fibers produced by a range of bacteria, restored colonic Treg numbers in mice devoid of a gut microbiota and increased Treg numbers in colonized mice. The effects of SCFAs on Tregs were mediated through GPCR43, a receptor for SCFAs, which is expressed on colonic Tregs. Mice fed SCFAs were protected against experimentally induced colitis in a manner that was dependent on GPR43-expressing Tregs. Bacterial fermentation products regulate the number and function of regulatory T cells in the mouse colon. [Also see Perspective by Bollrath and Powrie] Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.


Genome Research | 2012

Genomic analysis identifies association of Fusobacterium with colorectal carcinoma

Aleksandar D. Kostic; Dirk Gevers; Chandra Sekhar Pedamallu; Monia Michaud; Fujiko Duke; Ashlee M. Earl; Akinyemi I. Ojesina; Joonil Jung; Adam J. Bass; Josep Tabernero; José Baselga; Chen Liu; Ramesh A. Shivdasani; Shuji Ogino; Bruce Birren; Curtis Huttenhower; Wendy S. Garrett; Matthew Meyerson

The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.


Cell Host & Microbe | 2010

Enterobacteriaceae Act in Concert with the Gut Microbiota to Induce Spontaneous and Maternally Transmitted Colitis

Wendy S. Garrett; Carey Ann Gallini; Tanya Yatsunenko; Monia Michaud; Andrea M. DuBois; Mary L. Delaney; Shivesh Punit; Maria Karlsson; Lynn Bry; Jonathan N. Glickman; Jeffrey I. Gordon; Andrew B. Onderdonk; Laurie H. Glimcher

Disruption of homeostasis between the host immune system and the intestinal microbiota leads to inflammatory bowel disease (IBD). Whether IBD is instigated by individual species or disruptions of entire microbial communities remains controversial. We characterized the fecal microbial communities in the recently described T-bet(-/-) ×Rag2(-/-) ulcerative colitis (TRUC) model driven by T-bet deficiency in the innate immune system. 16S rRNA-based analysis of TRUC and Rag2(-/-) mice revealed distinctive communities that correlate with host genotype. The presence of Klebsiella pneumoniae and Proteus mirabilis correlates with colitis in TRUC animals, and these TRUC-derived strains can elicit colitis in Rag2(-/-) and WT adults but require a maternally transmitted endogenous microbial community for maximal intestinal inflammation. Cross-fostering experiments indicated a role for these organisms in maternal transmission of disease. Our findings illustrate how gut microbial communities work in concert with specific culturable colitogenic agents to cause IBD.


Science | 2016

Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut

Michael R. Howitt; Sydney Lavoie; Monia Michaud; Arthur M. Blum; Sara V. Tran; Joel V. Weinstock; Carey Ann Gallini; Kevin Redding; Robert F. Margolskee; Lisa C. Osborne; David Artis; Wendy S. Garrett

Tuft cells help contain parasites Trillions of microbes inhabit our guts, including worms and other parasites. Epithelial cells that line the gut orchestrate parasite-targeted immune responses. Howitt et al. now identify a key cellular player in immunity to parasites: tuft cells (see the Perspective by Harris). Tuft cells make up a small fraction of gut epithelial cells but expand when parasites colonize or infect the gut. Parasites cause tuft cells to secrete large amounts of interleukin-25, a key cytokine for parasite clearance that also indirectly feeds back on tuft cells to expand their numbers. Tuft cells express chemosensory signaling machinery: disrupting this blocked parasite-triggered tuft cell expansion and weakened the ability of mice to control a parasitic infection. Science, this issue p. 1329; see also p. 1264 Gut epithelial tuft cells are key players in mucosal immune responses against parasites. [Also see Perspective by Harris] The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes

Patrick Veiga; Carey Ann Gallini; Chloé Beal; Monia Michaud; Mary L. Delaney; Andrea M. DuBois; Artem Khlebnikov; Johan van Hylckama Vlieg; Shivesh Punit; Jonathan N. Glickman; Andrew B. Onderdonk; Laurie H. Glimcher; Wendy S. Garrett

Intestinal health requires the coexistence of eukaryotic self with the gut microbiota and dysregulated host-microbial interactions can result in intestinal inflammation. Here, we show that colitis improved in T-bet−/−Rag2−/− mice that consumed a fermented milk product containing Bifidobacterium animalis subsp. lactis DN-173 010 strain. A decrease in cecal pH and alterations in short chain fatty acid profiles occurred with consumption, and there were concomitant increases in the abundance of select lactate-consuming and butyrate-producing bacteria. These metabolic shifts created a nonpermissive environment for the Enterobacteriaceae recently identified as colitogenic in a T-bet−/−Rag2−/− ulcerative colitis mouse model. In addition, 16S rRNA-based analysis of the T-bet−/−Rag2−/−fecal microbiota suggest that the structure of the endogenous gut microbiota played a key role in shaping the host response to the bacterial strains studied herein. We have identified features of the gut microbiota, at the membership and functional level, associated with response to this B. lactis-containing fermented milk product, and therefore this model provides a framework for evaluating and optimizing probiotic-based functional foods.


The ISME Journal | 2014

Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission

Michelle G. Rooks; Patrick Veiga; Leslie Wardwell-Scott; Timothy L. Tickle; Nicola Segata; Monia Michaud; Carey Ann Gallini; Chloé Beal; Johan Et van Hylckama-Vlieg; Sonia Arora Ballal; Xochitl C. Morgan; Jonathan N. Glickman; Dirk Gevers; Curtis Huttenhower; Wendy S. Garrett

Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet−/− Rag2−/− mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis.


Cancer Cell | 2009

Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells.

Wendy S. Garrett; Shivesh Punit; Carey Ann Gallini; Monia Michaud; Dorothy Zhang; Kirsten Sigrist; Graham M. Lord; Jonathan N. Glickman; Laurie H. Glimcher

We previously described a mouse model of ulcerative colitis linked to T-bet deficiency in the innate immune system. Here, we report that the majority of T-bet(-/-)RAG2(-/-) ulcerative colitis (TRUC) mice spontaneously progress to colonic dysplasia and rectal adenocarcinoma solely as a consequence of MyD88-independent intestinal inflammation. Dendritic cells (DCs) are necessary cellular effectors for a proinflammatory program that is carcinogenic. Whereas these malignancies arise in the setting of a complex inflammatory environment, restoration of T-bet selectively in DCs was sufficient to reduce colonic inflammation and prevent the development of neoplasia. TRUC colitis-associated colorectal cancer resembles the human disease and provides ample opportunity to probe how inflammation drives colorectal cancer development and to test preventative and therapeutic strategies preclinically.


Diabetes | 2009

Interleukin-21 Is Required for the Development of Type 1 Diabetes in NOD Mice

Andrew P. R. Sutherland; Tom Van Belle; Andrea L. Wurster; Akira Suto; Monia Michaud; Dorothy Zhang; Michael J. Grusby; Matthias von Herrath

OBJECTIVE Interleukin (IL)-21 is a type 1 cytokine that has been implicated in the pathogenesis of type 1 diabetes via the unique biology of the nonobese diabetic (NOD) mouse strain. The aim of this study was to investigate a causal role for IL-21 in type 1 diabetes. RESEARCH DESIGN AND METHODS We generated IL-21R–deficient NOD mice and C57Bl/6 mice expressing IL-21 in pancreatic β-cells, allowing the determination of the role of insufficient and excessive IL-21 signaling in type 1 diabetes. RESULTS Deficiency in IL-21R expression renders NOD mice resistant to insulitis, production of insulin autoantibodies, and onset of type 1 diabetes. The lymphoid compartment in IL-21R−/− NOD is normal and does not contain an increased regulatory T-cell fraction or diminished effector cytokine responses. However, we observed a clear defect in autoreactive effector T-cells in IL-21R−/− NOD by transfer experiments. Conversely, overexpression of IL-21 in pancreatic β-cells induced inflammatory cytokine and chemokines, including IL-17A, IL17F, IFN-γ, monocyte chemoattractant protein (MCP)-1, MCP-2, and interferon-inducible protein-10 in the pancreas. The ensuing leukocytic infiltration in the islets resulted in destruction of β-cells and spontaneous type 1 diabetes in the normally diabetes-resistant C57Bl/6 and NOD × C57Bl/6 backgrounds. CONCLUSIONS This work provides demonstration of the essential prodiabetogenic activities of IL-21 on diverse genetic backgrounds (NOD and C57BL/6) and indicates that IL-21 blockade could be a promising strategy for interventions in human type 1 diabetes.


The New England Journal of Medicine | 2013

Sequence-Based Discovery of Bradyrhizobium enterica in Cord Colitis Syndrome

Ami B. Bhatt; Sam Freeman; Alex F. Herrera; Chandra Sekhar Pedamallu; Dirk Gevers; Fujiko Duke; Joonil Jung; Monia Michaud; Bruce D. Walker; Sally U. Young; Ashlee M. Earl; Aleksander D. Kostic; Akinyemi I. Ojesina; Robert P. Hasserjian; Karen K. Ballen; Yi-Bin Chen; Gabriela Hobbs; Joseph H. Antin; Robert J. Soiffer; Lindsey R. Baden; Wendy S. Garrett; Jason L. Hornick; Francisco M. Marty; Matthew Meyerson

BACKGROUND Immunosuppression is associated with a variety of idiopathic clinical syndromes that may have infectious causes. It has been hypothesized that the cord colitis syndrome, a complication of umbilical-cord hematopoietic stem-cell transplantation, is infectious in origin. METHODS We performed shotgun DNA sequencing on four archived, paraffin-embedded endoscopic colon-biopsy specimens obtained from two patients with cord colitis. Computational subtraction of human and known microbial sequences and assembly of residual sequences into a bacterial draft genome were performed. We used polymerase-chain-reaction (PCR) assays and fluorescence in situ hybridization to determine whether the corresponding bacterium was present in additional patients and controls. RESULTS DNA sequencing of the biopsy specimens revealed more than 2.5 million sequencing reads that did not match known organisms. These sequences were computationally assembled into a 7.65-Mb draft genome showing a high degree of homology with genomes of bacteria in the bradyrhizobium genus. The corresponding newly discovered bacterium was provisionally named Bradyrhizobium enterica. PCR identified B. enterica nucleotide sequences in biopsy specimens from all three additional patients with cord colitis whose samples were tested, whereas B. enterica sequences were absent in samples obtained from healthy controls and patients with colon cancer or graft-versus-host disease. CONCLUSIONS We assembled a novel bacterial draft genome from the direct sequencing of tissue specimens from patients with cord colitis. Association of these sequences with cord colitis suggests that B. enterica may be an opportunistic human pathogen. (Funded by the National Cancer Institute and others.)


Cell Reports | 2015

CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function.

Eunyoung Chun; Sydney Lavoie; Monia Michaud; Carey Ann Gallini; Jason Kim; Genevieve Soucy; Robert D. Odze; Jonathan N. Glickman; Wendy S. Garrett

Summary Our study reveals a non-canonical role for CCL2 in modulating non-macrophage, myeloid-derived suppressor cells (MDSCs) and shaping a tumor-permissive microenvironment during colon cancer development. We found that intratumoral CCL2 levels increased in patients with colitis-associated colorectal cancer (CRC), adenocarcinomas, and adenomas. Deletion of CCL2 blocked progression from dysplasia to adenocarcinoma and reduced the number of colonic MDSCs in a spontaneous mouse model of colitis-associated CRC. In a transplantable mouse model of adenocarcinoma and an APC-driven adenoma model, CCL2 fostered MDSC accumulation in evolving colonic tumors and enhanced polymorphonuclear (PMN)-MDSC immunosuppressive features. Mechanistically, CCL2 regulated T cell suppression of PMN-MDSCs in a STAT3-mediated manner. Furthermore, CCL2 neutralization decreased tumor numbers and MDSC accumulation and function. Collectively, our experiments support that perturbing CCL2 and targeting MDSCs may afford therapeutic opportunities for colon cancer interception and prevention.

Collaboration


Dive into the Monia Michaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew P. R. Sutherland

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrea M. DuBois

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Onderdonk

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge