Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joo-Yeun Oh is active.

Publication


Featured researches published by Joo-Yeun Oh.


Biochemical Journal | 2006

Induction of the permeability transition and cytochrome c release by 15-deoxy-Δ12,14-prostaglandin J2 in mitochondria

Aimee Landar; Sruti Shiva; Anna-Liisa Levonen; Joo-Yeun Oh; Corinne Zaragoza; Michelle S. Johnson; Victor M. Darley-Usmar

The electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is known to allow adaptation to oxidative stress in cells at low concentrations and apoptosis at high levels. The mechanisms leading to adaptation involve the covalent modification of regulatory proteins, such as Keap1, and augmentation of antioxidant defences in the cell. The targets leading to apoptosis are less well defined, but mitochondria have been indirectly implicated in the mechanisms of cell death mediated by electrophilic lipids. To determine the potential of electrophilic cyclopentenones to induce pro-apoptotic effects in the mitochondrion, we used isolated liver mitochondria and demonstrated that 15d-PGJ2 promotes Ca2+-induced mitochondrial swelling and cytochrome c release. The mechanisms involved are consistent with direct modification of protein thiols in the mitochondrion, rather than secondary formation of reactive oxygen species or lipid peroxidation. Using proteomic analysis in combination with biotinylated 15d-PGJ2, we were able to identify 17 potential targets of the electrophile-responsive proteome in isolated liver mitochondria. Taken together, these results suggest that electrophilic lipid oxidation products can target a sub-proteome in mitochondria, and this in turn results in the transduction of the electrophilic stimulus to the cell through cytochrome c release.


Frontiers in Physiology | 2012

Oxidative modification of proteins: an emerging mechanism of cell signaling

Stephanie B. Wall; Joo-Yeun Oh; Anne R. Diers; Aimee Landar

There are a wide variety of reactive species which can affect cell function, including reactive oxygen, nitrogen, and lipid species. Some are formed endogenously through enzymatic or non-enzymatic pathways, and others are introduced through diet or environmental exposure. Many of these reactive species can interact with biomolecules and can result in oxidative post-translational modification of proteins. It is well documented that some oxidative modifications cause macromolecular damage and cell death. However, a growing body of evidence suggests that certain classes of reactive species initiate cell signaling by reacting with specific side chains of peptide residues without causing cell death. This process is generally termed “redox signaling,” and its role in physiological and pathological processes is a subject of active investigation. This review will give an overview of oxidative protein modification as a mechanism of redox signaling, including types of reactive species and how they modify proteins, examples of modified proteins, and a discussion about the current concepts in this area.


Free Radical Biology and Medicine | 2009

Methods for imaging and detecting modification of proteins by reactive lipid species

Ashlee N. Higdon; Brian P. Dranka; Bradford G. Hill; Joo-Yeun Oh; Michelle S. Johnson; Aimee Landar; Victor M. Darley-Usmar

Products of lipid peroxidation are generated in a wide range of pathologies associated with oxidative stress and inflammation. Many oxidized lipids contain reactive functional groups that can modify proteins, change their structure and function, and affect cell signaling. However, intracellular localization and protein adducts of reactive lipids have been difficult to detect, and the methods of detection rely largely on antibodies raised against specific lipid-protein adducts. As an alternative approach to monitoring oxidized lipids in cultured cells, we have tagged the lipid peroxidation substrate arachidonic acid and an electrophilic lipid, 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2), with either biotin or the fluorophore BODIPY. Tagged arachidonic acid can be used in combination with conditions of oxidant stress or inflammation to assess the subcellular localization and protein modification by oxidized lipids generated in situ. Furthermore, we show that reactive lipid oxidation products such as 15d-PGJ2 can also be labeled and used in fluorescence and Western blotting applications. This article describes the synthesis, purification, and selected application of these tagged lipids in vitro.


Biochimica et Biophysica Acta | 2014

Detection of electrophile-sensitive proteins

Stephanie B. Wall; M. Ryan Smith; Karina C. Ricart; Fen Zhou; Praveen K. Vayalil; Joo-Yeun Oh; Aimee Landar

BACKGROUND Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues. SCOPE OF REVIEW This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics. MAJOR CONCLUSIONS There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts. GENERAL SIGNIFICANCE In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Free Radical Biology and Medicine | 2015

Red blood cell washing, nitrite therapy, and antiheme therapies prevent stored red blood cell toxicity after trauma–hemorrhage

Ryan Stapley; Cilina Rodriguez; Joo-Yeun Oh; Jaideep Honavar; Angela Brandon; Brant M. Wagener; Marisa B. Marques; Jordan A. Weinberg; Jeffrey D. Kerby; Jean-Francois Pittet; Rakesh P. Patel

Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage. A murine (C57BL/6) model of trauma-hemorrhage and resuscitation with 1 or 3 units of RBCs stored for 0-10 days was used. Tested variables included washing RBCs to remove lower MW components that scavenge NO, NO-repletion therapy using nitrite, or mitigation of free heme toxicity by heme scavenging or preventing TLR4 activation. Stored RBC toxicity was determined by assessment of acute lung injury indices (airway edema and inflammation) and survival. Transfusion with 5 day RBCs increased acute lung injury indexed by BAL protein and neutrophil accumulation. Washing 5 day RBCs prior to transfusion did not decrease this injury, whereas nitrite therapy did. Transfusion with 10 day RBCs elicited a more severe injury resulting in ~90% lethality, compared to <15% with 5 day RBCs. Both washing and nitrite therapy significantly protected against 10 day RBC-induced lethality, suggesting that washing may be protective when the injury stimulus is more severe. Finally, a spectral deconvolution assay was developed to simultaneously measure free heme and hemoglobin in stored RBC supernatants, which demonstrated significant increases of both in stored human and mouse RBCs. Transfusion with free heme partially recapitulated the toxicity mediated by stored RBCs. Furthermore, inhibition of TLR4 signaling, which is stimulated by heme, using TAK-242, or hemopexin-dependent sequestration of free heme significantly protected against both 5 day and 10 day mouse RBC-dependent toxicity. These data suggest that RBC washing, nitrite therapy, and/or antiheme and TLR4 strategies may prevent stored RBC toxicities.


Redox biology | 2016

Absorbance and redox based approaches for measuring free heme and free hemoglobin in biological matrices.

Joo-Yeun Oh; Jennifer Hamm; Xin Xu; Kristopher Genschmer; Ming Zhong; Jeffrey D. Lebensburger; Marisa B. Marques; Jeffrey D. Kerby; Jean-Francois Pittet; Amit Gaggar; Rakesh P. Patel

Cell-free heme (CFH) and hemoglobin (Hb) have emerged as distinct mediators of acute injury characterized by inflammation and microcirculatory dysfunction in hemolytic conditions and critical illness. Several reports have shown changes in Hb and CFH in specific pathophysiological settings. Using PBS, plasma from patients with sickle cell disease, acute respiratory distress syndrome (ARDS) patients and supernatants from red cells units, we found that commonly used assays and commercially available kits do not distinguish between CFH and Hb. Furthermore, they suffer from a variety of false-positive interferences and limitations (including from bilirubin) that lead to either over- or underestimation of CFH and/or Hb. Moreover, commonly used protocols to separate CFH and Hb based on molecular weight (MWt) are inefficient due to CFH hydrophobicity. In this study, we developed and validated a new approach based on absorbance spectrum deconvolution with least square fitting analyses that overcomes these limitations and simultaneously measures CFH and Hb in simple aqueous buffers, plasma or when associated with red cell derived microvesicles. We show how incorporating other plasma factors that absorb light over the visible wavelength range (specifically bilirubin), coupled with truncating the wavelength range analyzed, or addition of mild detergent significantly improves fits allowing measurement of oxyHb, CFH and metHb with >90% accuracy. When this approach was applied to samples from SCD patients, we observed that CFH levels are higher than previously reported and of similar magnitude to Hb.


Redox biology | 2015

Rac1 modification by an electrophilic 15-deoxy Δ12,14-prostaglandin J2 analog

Stephanie B. Wall; Joo-Yeun Oh; Lauren Mitchell; A.H. Laube; Sharon L. Campbell; Matthew B. Renfrow; Aimee Landar

Vascular endothelial cells (ECs) are important for maintaining vascular homeostasis. Dysfunction of ECs contributes to cardiovascular diseases, including atherosclerosis, and can impair the healing process during vascular injury. An important mediator of EC response to stress is the GTPase Rac1. Rac1 responds to extracellular signals and is involved in cytoskeletal rearrangement, reactive oxygen species generation and cell cycle progression. Rac1 interacts with effector proteins to elicit EC spreading and formation of cell-to-cell junctions. Rac1 activity has recently been shown to be modulated by glutathiolation or S-nitrosation via an active site cysteine residue. However, it is not known whether other redox signaling compounds can modulate Rac1 activity. An important redox signaling mediator is the electrophilic lipid, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). This compound is a downstream product of cyclooxygenase and forms covalent adducts with specific cysteine residues, and induces cellular signaling in a pleiotropic manner. In this study, we demonstrate that a biotin-tagged analog of 15d-PGJ2 (bt-15d-PGJ2) forms an adduct with Rac1 in vitro at the C157 residue, and an additional adduct was detected on the tryptic peptide associated with C178. Rac1 modification in addition to modulation of Rac1 activity by bt-15d-PGJ2 was observed in cultured ECs. In addition, decreased EC migration and cell spreading were observed in response to the electrophile. These results demonstrate for the first time that Rac1 is a target for 15d-PGJ2 in ECs, and suggest that Rac1 modification by electrophiles such as 15d-PGJ2 may alter redox signaling and EC function.


Transfusion | 2015

Predicting storage‐dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin‐2 oxidation, and hemoglobin and free heme measurements

Joo-Yeun Oh; Ryan Stapley; Victoria M. Harper; Marisa B. Marques; Rakesh P. Patel

Storage‐dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision‐making. Oxidative‐stress mediates storage‐dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in “young” RBCs will predict storage‐dependent hemolysis.


PLOS ONE | 2015

A novel class of mitochondria-targeted soft electrophiles modifies mitochondrial proteins and inhibits mitochondrial metabolism in breast cancer cells through redox mechanisms.

Praveen K. Vayalil; Joo-Yeun Oh; Fen Zhou; Anne R. Diers; M. Ryan Smith; Hafez Golzarian; Patsy G. Oliver; Robin A. J. Smith; Michael P. Murphy; Sadanandan E. Velu; Aimee Landar

Despite advances in screening and treatment over the past several years, breast cancer remains a leading cause of cancer-related death among women in the United States. A major goal in breast cancer treatment is to develop safe and clinically useful therapeutic agents that will prevent the recurrence of breast cancers after front-line therapeutics have failed. Ideally, these agents would have relatively low toxicity against normal cells, and will specifically inhibit the growth and proliferation of cancer cells. Our group and others have previously demonstrated that breast cancer cells exhibit increased mitochondrial oxygen consumption compared with non-tumorigenic breast epithelial cells. This suggests that it may be possible to deliver redox active compounds to the mitochondria to selectively inhibit cancer cell metabolism. To demonstrate proof-of-principle, a series of mitochondria-targeted soft electrophiles (MTSEs) has been designed which selectively accumulate within the mitochondria of highly energetic breast cancer cells and modify mitochondrial proteins. A prototype MTSE, IBTP, significantly inhibits mitochondrial oxidative phosphorylation, resulting in decreased breast cancer cell proliferation, cell attachment, and migration in vitro. These results suggest MTSEs may represent a novel class of anti-cancer agents that prevent cancer cell growth by modification of specific mitochondrial proteins.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Nitrite therapy improves survival postexposure to chlorine gas.

Jaideep Honavar; Stephen F. Doran; Joo-Yeun Oh; Chad Steele; Sadis Matalon; Rakesh P. Patel

Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios.

Collaboration


Dive into the Joo-Yeun Oh's collaboration.

Top Co-Authors

Avatar

Aimee Landar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rakesh P. Patel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Marisa B. Marques

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stephanie B. Wall

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Fen Zhou

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Karina C. Ricart

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Matthew B. Renfrow

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michelle S. Johnson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge