Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordi Cabrefiga is active.

Publication


Featured researches published by Jordi Cabrefiga.


Peptides | 2007

A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria

Esther Badosa; Rafael Ferre; Marta Planas; Lidia Feliu; Emili Besalú; Jordi Cabrefiga; Eduard Bardají; Emilio Montesinos

A 125-member library of synthetic linear undecapeptides was prepared based on a previously described peptide H-K(1)KLFKKILKF(10)L-NH(2) (BP76) that inhibited in vitro growth of the plant pathogenic bacteria Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas syringae pv. syringae at low micromolar concentrations. Peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and hydrophilicity at positions 1 and 10 and by varying the N-terminus. Library screening for in vitro growth inhibition identified 27, 40 and 113 sequences with MIC values below 7.5 microM against E. amylovora, P. syringae and X. axonopodis, respectively. Cytotoxicity, bactericidal activity and stability towards protease degradation of the most active peptides were also determined. Seven peptides with a good balance between antibacterial and hemolytic activities were identified. Several analogues displayed a bactericidal effect and low susceptibility to protease degradation. The most promising peptides were tested in vivo by evaluating their preventive effect of inhibition of E. amylovora infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH(2) (BP100) showed efficacies in flowers of 63-76% at 100 microM, being more potent than BP76 and only less effective than streptomycin, currently used for fire blight control.


International Microbiology | 2011

Antimicrobial peptide genes in Bacillus strains from plant environments.

Isabel Mora; Jordi Cabrefiga; Emilio Montesinos

The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA- bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens.


Phytopathology | 2005

Analysis of Aggressiveness of Erwinia amylovora Using Disease-Dose and Time Relationships

Jordi Cabrefiga; Emilio Montesinos

ABSTRACT The aggressiveness of an extensive collection of strains of Erwinia amylovora was analyzed using immature fruit and detached pear flower assays under controlled environmental conditions. The analysis was performed by means of a quantitative approach based on fitting data to mathematical models that relate infection incidence to pathogen dose and time. Probit and hyperbolic saturation models were used for disease-dose relationships and provided information on the median effective dose (ED(50)). Values of ED(50) ranged from 10(3) to 10(6) CFU/ml (10 to 10(4) CFU per site of inoculation). A modified Gompertz model was used for disease-time relationships and provided information on the rate of infection incidence progression (r(g)) and time delayed to start of the incidence progress curve (t(0)). Values of r(g) ranged from near 0 to 1.90, and t(0) varied from 1.3 to more than 10 days. The more aggressive strains showed high r(g), low ED(50) values, and short t(0), whereas the less aggressive strains showed low r(g), high ED(50), and long t (0). The aggressiveness was dependent on plant material type and pear cultivars and was significantly different between strains of E. amylovora. Infectivity titration and kinetic analysis of progression of incidence of infections using the immature pear test and a standardized scale are proposed for assessment of strain aggressiveness. The implications of r(g), ED(50), and t(0) for the epidemiology and management of fire blight are discussed, particularly the wide range of aggressiveness among strains, the degree of host specificity observed in pear isolates, the very high infective potential of this pathogen, the independent action of pathogen cells during infection, and the possible advantage of including aggressiveness parameters into fire blight risk forecasting systems.


Phytopathology | 2006

An indigenous virulent strain of Erwinia amylovora lacking the ubiquitous plasmid pEA29.

Pablo Llop; Victoria Donat; Margarita Rodríguez; Jordi Cabrefiga; Lídia Ruz; José Luis Palomo; Emilio Montesinos; María M. López

ABSTRACT An atypical strain of Erwinia amylovora was isolated near an outbreak of fire blight at a nursery in Spain in 1996. It was obtained from a Crataegus plant showing typical symptoms and was identified as E. amy-lovora by biochemical tests and enrichment-enzyme-linked immuno-sorbent assay, but not by polymerase chain reaction using primers based on the pEA29 sequence. Nevertheless, with primers from chromosomal regions, the isolate gave the expected amplification band. This strain carries one plasmid of approximately 70 kb, with no homology with the 29-kb plasmid common to all pathogenic strains, or with a large plasmid present in some E. amylovora strains. Growth of the strain in minimal medium without thiamine was slower compared with cultures in the same medium with thiamine, a characteristic typical of strains cured of the 29-kb plasmid. Nevertheless, aggressiveness assays on pear, apple, and Pyracantha plants and in immature pear fruit showed that this strain exhibited a virulence level similar to other strains containing pEA29. To the best of our knowledge, this is the first report of the isolation from naturally infected plant material of a pathogenic strain of E. amylovora without pEA29, but with a plasmid of approximately 70 kb not previously described.


International Microbiology | 2007

Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora , the causal agent of fire blight

Jordi Cabrefiga; A. Bonaterra; Emilio Montesinos

Pseudomonas fluorescens EPS62e was selected during a screening procedure for its high efficacy in controlling infections by Erwinia amylovora, the causal agent of fire blight disease, on different plant materials. In field trials carried out in pear trees during bloom, EPS62e colonized flowers until the carrying capacity, providing a moderate efficacy of fire-blight control. The putative mechanisms of EPS62e antagonism against E. amylovora were studied. EPS62e did not produce antimicrobial compounds described in P. fluorescens species and only developed antagonism in Kings B medium, where it produced siderophores. Interaction experiments in culture plate wells including a membrane filter, which physically separated the cultures, confirmed that inhibition of E. amylovora requires cell-to-cell contact. The spectrum of nutrient assimilation indicated that EPS62e used significantly more or different carbon sources than the pathogen. The maximum growth rate and affinity for nutrients in immature fruit extract were higher in EPS62e than in E. amylovora, but the cell yield was similar. The fitness of EPS62e and E. amylovora was studied upon inoculation in immature pear fruit wounds and hypanthia of intact flowers under controlled-environment conditions. When inoculated separately, EPS62e grew faster in flowers, whereas E. amylovora grew faster in fruit wounds because of its rapid spread to adjacent tissues. However, in preventive inoculations of EPS62e, subsequent growth of EPS101 was significantly inhibited. It is concluded that cell-to-cell interference as well as differences in growth potential and the spectrum and efficiency of nutrient use are mechanisms of antagonism of EPS62e against E. amylovora.


Applied and Environmental Microbiology | 2011

Improvement of the Efficacy of Linear Undecapeptides against Plant-Pathogenic Bacteria by Incorporation of D-Amino Acids

Imma Güell; Jordi Cabrefiga; Esther Badosa; Rafael Ferre; Montserrat Talleda; Eduard Bardají; Marta Planas; Lidia Feliu; Emilio Montesinos

ABSTRACT A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH2), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH2) and BP145 (KKLFKKILKYL-NH2), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear.


PLOS ONE | 2011

Erwinia amylovora novel plasmid pEI70: Complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen

Pablo Llop; Jordi Cabrefiga; Theo H. M. Smits; Tanja Dreo; Silvia Barbé; Joanna Pulawska; Alain Bultreys; Jochen Blom; Brion Duffy; Emilio Montesinos; María M. López

Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.


Applied and Environmental Microbiology | 2011

Improvement of Fitness and Efficacy of a Fire Blight Biocontrol Agent via Nutritional Enhancement Combined with Osmoadaptation

Jordi Cabrefiga; J. Francés; Emilio Montesinos; A. Bonaterra

ABSTRACT The efficacy of Pseudomonas fluorescens EPS62e in the biocontrol of Erwinia amylovora was improved by a procedure of physiological adaptation to increase colonization and survival in the phytosphere of rosaceous plants. The procedure consisted of osmoadaptation (OA) and nutritional enhancement (NE). OA was based on saline stress and osmolyte amendment of the growth medium during inoculum preparation. NE consisted of addition of glycine and Tween 80 to the formulation. NE and OA increased the growth rate and carrying capacity of EPS62e under high-relative-humidity (RH) conditions and improved survival at low RH on flowers under controlled environmental conditions. NE did not promote growth or affect infection capacity of E. amylovora. The effect of both methods was tested in the field by following the population of EPS62e using quantitative PCR (Q-PCR) (total population) and CFU counting (culturable population) methods. Following field application, EPS62e colonized blossoms, but it was stressed, as indicated by a sharp decrease in culturable compared to total population levels. However, once established in flowers and at the end of bloom, almost all the total population was culturable. The physiological adaptation treatments increased population levels of EPS62e over those of nonadapted cells during the late stage of the flowering period. Control of fire blight infections in flowers and immature fruits was tested by field application of EPS62e and subsequent inoculation with E. amylovora under controlled-environment conditions. The efficacy of fire blight control increased significantly with the combination of nutritional enhancement and osmoadaptation, in comparison with the absence of physiological adaptation.


PLOS ONE | 2015

Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

Isabel Mora; Jordi Cabrefiga; Emilio Montesinos

The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of antimicrobial cLPs.


Protein and Peptide Letters | 2014

Antimicrobial Peptides Incorporating Non-Natural Amino Acids as Agents for Plant Protection

Iteng Ng-Choi; Marta Soler; Imma Güell; Esther Badosa; Jordi Cabrefiga; Eduard Bardají; Emilio Montesinos; Marta Planas; Lidia Feliu

The control of plant pathogens is mainly based on copper compounds and antibiotics. However, the use of these compounds has some limitations. They have a high environmental impact and the use of antibiotics is not allowed in several countries. Moreover, resistance has been developed to these pathogens. The identification of new agents able to fight plant pathogenic bacteria and fungi will represent an alternative to currently used antibiotics or pesticides. Antimicrobial peptides are widely recognized as promising candidates, however naturally occurring sequences present drawbacks that limit their development. These include susceptibility to protease degradation and low bioavailability. To overcome these problems, research has focused on the introduction of unnatural amino acids into lead peptide sequences. In particular, we have improved the biological profile of antimicrobial peptides active against plant pathogenic bacteria and fungi by incorporating triazolyl, biaryl and D-amino acids into their sequence. These modifications and their influence on the biological activity are summarized.

Collaboration


Dive into the Jordi Cabrefiga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Llop

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge