Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge L. Rodriguez-Gil is active.

Publication


Featured researches published by Jorge L. Rodriguez-Gil.


Nature | 2011

The landscape of recombination in African Americans

Anjali G. Hinch; Arti Tandon; Nick Patterson; Yunli Song; Nadin Rohland; C. Palmer; Gary K. Chen; Kai Wang; Sarah G. Buxbaum; Ermeg L. Akylbekova; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Eric Boerwinkle; Qiuyin Cai; Neil E. Caporaso; Graham Casey; L. Adrienne Cupples; Sandra L. Deming; W. Ryan Diver; Jasmin Divers; Myriam Fornage; Elizabeth M. Gillanders; Joseph T. Glessner; Curtis C. Harris

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


PLOS Genetics | 2011

Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium

Bogdan Pasaniuc; Noah Zaitlen; Guillaume Lettre; Gary K. Chen; Arti Tandon; W.H. Linda Kao; Ingo Ruczinski; Myriam Fornage; David S. Siscovick; Xiaofeng Zhu; Emma K. Larkin; Leslie A. Lange; L. Adrienne Cupples; Qiong Yang; Ermeg L. Akylbekova; Solomon K. Musani; Jasmin Divers; Joe Mychaleckyj; Mingyao Li; George J. Papanicolaou; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.


Translational Psychiatry | 2012

Genome-wide meta-analyses of smoking behaviors in African Americans

Sean P. David; Ajna Hamidovic; Gary K. Chen; Andrew W. Bergen; J. Wessel; Jay Kasberger; Wm Brown; S. Petruzella; Evan L. Thacker; Young Jin Kim; Michael A. Nalls; Greg Tranah; Yun Ju Sung; Christine B. Ambrosone; Donna K. Arnett; Elisa V. Bandera; Diane M. Becker; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Ulrich Broeckel; Sarah G. Buxbaum; Neil E. Caporaso; Graham Casey; Stephen J. Chanock; Sandra L. Deming; W. R. Diver; Charles B. Eaton; Daniel S. Evans

The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n=32 389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (β=0.040, s.e.=0.007, P=1.84 × 10−8). This variant is present in the 5′-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.


PLOS Genetics | 2011

Identification, replication, and fine-mapping of Loci associated with adult height in individuals of african ancestry.

Amidou N'Diaye; Gary K. Chen; C. Palmer; Bing Ge; Bamidele O. Tayo; Rasika A. Mathias; Jingzhong Ding; Michael A. Nalls; Adebowale Adeyemo; Véronique Adoue; Christine B. Ambrosone; Larry D. Atwood; Elisa V. Bandera; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Eric Boerwinkle; Angela Britton; Graham Casey; Stephen J. Chanock; Ellen W. Demerath; Sandra L. Deming; W. Ryan Diver; Caroline S. Fox; Tamara B. Harris; Dena Hernandez; Jennifer J. Hu; Sue A. Ingles; Esther M. John

Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.


Human Molecular Genetics | 2011

Fine-Mapping of Breast Cancer Susceptibility Loci Characterizes Genetic Risk in African Americans

Fang Chen; Gary K. Chen; Robert C. Millikan; Esther M. John; Christine B. Ambrosone; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sandra L. Deming; Elisa V. Bandera; Sarah J. Nyante; Julie R. Palmer; Timothy R. Rebbeck; Sue A. Ingles; Michael F. Press; Jorge L. Rodriguez-Gil; Stephen J. Chanock; Loı̈c Le Marchand; Laurence N. Kolonel; Brian E. Henderson; Daniel O. Stram; Christopher A. Haiman

Genome-wide association studies (GWAS) have revealed 19 common genetic variants that are associated with breast cancer risk. Testing of the index signals found through GWAS and fine-mapping of each locus in diverse populations will be necessary for characterizing the role of these risk regions in contributing to inherited susceptibility. In this large study of breast cancer in African-American women (3016 cases and 2745 controls), we tested the 19 known risk variants identified by GWAS and replicated associations (P < 0.05) with only 4 variants. Through fine-mapping, we identified markers in four regions that better capture the association with breast cancer risk in African Americans as defined by the index signal (2q35, 5q11, 10q26 and 19p13). We also identified statistically significant associations with markers in four separate regions (8q24, 10q22, 11q13 and 16q12) that are independent of the index signals and may represent putative novel risk variants. In aggregate, the more informative markers found in the study enhance the association of these risk regions with breast cancer in African Americans [per allele odds ratio (OR) = 1.18, P = 2.8 × 10(-24) versus OR = 1.04, P = 6.1 × 10(-5)]. In this detailed analysis of the known breast cancer risk loci, we have validated and improved upon markers of risk that better characterize their association with breast cancer in women of African ancestry.


American Journal of Human Genetics | 2014

Genome-wide Scan of 29,141 African Americans Finds No Evidence of Directional Selection since Admixture

Gaurav Bhatia; Arti Tandon; Nick Patterson; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Neil E. Caporaso; Graham Casey; Sandra L. Deming; W. Ryan Diver; Susan M. Gapstur; Elizabeth M. Gillanders; Curtis C. Harris; Brian E. Henderson; Sue A. Ingles; William B. Isaacs; Phillip L. De Jager; Esther M. John; Rick A. Kittles; Emma K. Larkin; Lorna H. McNeill; Robert C. Millikan; Adam B. Murphy; Christine Neslund-Dudas; Sarah J. Nyante

The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous studys conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas.


Human Molecular Genetics | 2014

A comprehensive examination of breast cancer risk loci in African American women

Ye Feng; Daniel O. Stram; Suhn Kyong Rhie; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Andrew F. Olshan; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles; Michael F. Press; Sandra L. Deming; Jorge L. Rodriguez-Gil; Julie R. Palmer; Olufunmilayo I. Olopade; Dezheng Huo; Clement Adebamowo; Temidayo O. Ogundiran; Gary K. Chen; Alex Stram; Karen Park; Kristin A. Rand; Stephen J. Chanock; Loic Le Marchand; Laurence N. Kolonel; David V. Conti

Genome-wide association studies have identified 73 breast cancer risk variants mainly in European populations. Given considerable differences in linkage disequilibrium structure between populations of European and African ancestry, the known risk variants may not be informative for risk in African ancestry populations. In a previous fine-mapping investigation of 19 breast cancer loci, we were able to identify SNPs in four regions that better captured risk associations in African American women. In this study of breast cancer in African American women (3016 cases, 2745 controls), we tested an additional 54 novel breast cancer risk variants. Thirty-eight variants (70%) were found to have an association with breast cancer in the same direction as previously reported, with eight (15%) replicating at P < 0.05. Through fine-mapping, in three regions (1q32, 3p24, 10q25), we identified variants that better captured associations with overall breast cancer or estrogen receptor positive disease. We also observed suggestive associations with variants (at P < 5 × 10(-6)) in three separate regions (6q25, 14q13, 22q12) that may represent novel risk variants. Directional consistency of association observed for ∼65-70% of currently known genetic variants for breast cancer in women of African ancestry implies a shared functional common variant at most loci. To validate and enhance the spectrum of alleles that define associations at the known breast cancer risk loci, as well as genome-wide, will require even larger collaborative efforts in women of African ancestry.


Human Molecular Genetics | 2016

Genome-wide association studies in women of African ancestry identified 3q26.21 as a novel susceptibility locus for oestrogen receptor negative breast cancer.

Dezheng Huo; Ye Feng; Stephen A. Haddad; Yonglan Zheng; Song Yao; Yoo Jeong Han; Temidayo O. Ogundiran; Clement Adebamowo; Oladosu Ojengbede; Adeyinka G. Falusi; Wei Zheng; William J. Blot; Qiuyin Cai; Lisa B. Signorello; Esther M. John; Leslie Bernstein; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles; Michael F. Press; Sandra L. Deming; Jorge L. Rodriguez-Gil; Katherine L. Nathanson; Susan M. Domchek; Timothy R. Rebbeck; Edward A. Ruiz-Narváez; Lara E. Sucheston-Campbell; Jeannette T. Bensen

Multiple breast cancer loci have been identified in previous genome-wide association studies, but they were mainly conducted in populations of European ancestry. Women of African ancestry are more likely to have young-onset and oestrogen receptor (ER) negative breast cancer for reasons that are unknown and understudied. To identify genetic risk factors for breast cancer in women of African descent, we conducted a meta-analysis of two genome-wide association studies of breast cancer; one study consists of 1,657 cases and 2,029 controls genotyped with Illumina’s HumanOmni2.5 BeadChip and the other study included 3,016 cases and 2,745 controls genotyped using Illumina Human1M-Duo BeadChip. The top 18,376 single nucleotide polymorphisms (SNP) from the meta-analysis were replicated in the third study that consists of 1,984 African Americans cases and 2,939 controls. We found that SNP rs13074711, 26.5 Kb upstream of TNFSF10 at 3q26.21, was significantly associated with risk of oestrogen receptor (ER)-negative breast cancer (odds ratio [OR]=1.29, 95% CI: 1.18-1.40; P = 1.8 × 10 − 8). Functional annotations suggest that the TNFSF10 gene may be involved in breast cancer aetiology, but further functional experiments are needed. In addition, we confirmed SNP rs10069690 was the best indicator for ER-negative breast cancer at 5p15.33 (OR = 1.30; P = 2.4 × 10 − 10) and identified rs12998806 as the best indicator for ER-positive breast cancer at 2q35 (OR = 1.34; P = 2.2 × 10 − 8) for women of African ancestry. These findings demonstrated additional susceptibility alleles for breast cancer can be revealed in diverse populations and have important public health implications in building race/ethnicity-specific risk prediction model for breast cancer.


PLOS ONE | 2013

A Genome-Wide Scan for Breast Cancer Risk Haplotypes among African American Women

Chi Song; Gary K. Chen; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles; Michael F. Press; Sandra L. Deming; Jorge L. Rodriguez-Gil; Stephen J. Chanock; Peggy Wan; Xin Sheng; Loreall Pooler; David Van Den Berg; Loic Le Marchand; Laurence N. Kolonel; Brian E. Henderson; Christopher A. Haiman; Daniel O. Stram

Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women (3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also proposed a heuristic of determining the significance level and the effective number of independent tests by the permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total (7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density.


Cancer Epidemiology, Biomarkers & Prevention | 2014

Inflammatory Biomarker C-Reactive Protein and Radiotherapy-Induced Early Adverse Skin Reactions in Patients with Breast Cancer

Jorge L. Rodriguez-Gil; Cristiane Takita; Jean L. Wright; Isildinha M. Reis; Wei Zhao; Brian E. Lally; Jennifer J. Hu

Background: Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer death in American women. Postsurgery adjuvant radiotherapy (RT) significantly reduced the local recurrence rate. However, many patients develop early adverse skin reactions (EASR) that impact quality of life and treatment outcomes. Methods: We evaluated an inflammatory biomarker, C-reactive protein (CRP), in predicting RT-induced EASRs in 159 patients with breast cancer undergoing RT. In each patient, we measured pre- and post-RT plasma CRP levels using a highly sensitive ELISA CRP assay. RT-induced EASRs were assessed at weeks 3 and 6 using the National Cancer Institute Common Toxicity Criteria (v3.0). Associations between EASRs and CRP levels were assessed using logistic regression models after adjusting for potential confounders. Results: RT-induced grade 2+ EASRs were observed in 8 (5%) and 80 (50%) patients at weeks 3 and 6 (end of RT), respectively. At the end of RT, a significantly higher proportion of African Americans developed grade 3 EASRs (13.8% vs. 2.3% in others); grade 2+ EASRs were significantly associated with: change of CRP > 1 mg/L [odds ratio (OR), 2.51; 95% confidence interval (CI), 1.06–5.95; P = 0.04], obesity (OR, 2.08; 95% CI, 1.03–4.21; P = 0.04), or combined both factors (OR, 5.21; 95% CI, 1.77–15.38; P = 0.003). Conclusion: This is the first study to demonstrate that an inflammatory biomarker CRP is associated with RT-induced EASRs, particularly combined with obesity. Impact: Future larger studies are warranted to validate our findings and facilitate the discovery and development of anti-inflammatory agents to protect normal tissue from RT-induced adverse effects and improve quality of life in patients with breast cancer undergoing RT. Cancer Epidemiol Biomarkers Prev; 23(9); 1873–83. ©2014 AACR.

Collaboration


Dive into the Jorge L. Rodriguez-Gil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie Bernstein

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue A. Ingles

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sarah J. Nyante

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary K. Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Press

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge