Jorge Nimptsch
Austral University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge Nimptsch.
Ecotoxicology and Environmental Safety | 2012
Vanessa Burmester; Jorge Nimptsch; Claudia Wiegand
Freshwater mussels such as the invasive Dreissena polymorpha and the indigenous Unio tumidus nourish by high filtration rates and may accumulate cyanobacteria and their toxins during cyanobacterial blooms. Physiological adaptations to cyanotoxins enable organisms to endure cyanobacterial blooms but may differ between species. Biotransformation and excretion capacities for cyanobacteria and anthropogenic pollutants have been demonstrated for Dreissena polymorpha but less for unionid species. This study compares the activities of biotransformation (glutathione S-transferase, GST) and antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT) in Dreissena polymorpha to Unio tumidus in response to cyanotoxin exposure (10 μg L(-1) and 50 μg L(-1) microcystin-LR, respectively, total microcystin from a cyanobacterial crude extract) for 24 h and 7d exposure duration. Enzyme activities in Dreissena polymorpha were measured in the whole mussel tissue, digestive gland and in gills and in Unio tumidus in the digestive gland, gills, mantle, foot as well as in the remaining tissue. The sGST was elevated for the entire exposure period in the whole mussel tissue of Dreissena polymorpha but despite higher basal activities in digestive gland and gills of Unio tumidus, it was rather inhibited or unaltered in most of their tissues. Elevated SOD activity indicated oxidative stress response in Dreissena polymorpha, but not in Unio tumidus. The CAT activity was barely affected in both species, rather inhibited in Unio tumidus, despite again higher basal activities in digestive gland and remaining tissue. Compared to the indigenous Unio tumidus, the investigated biotransformation and oxidative stress combating enzymes respond stronger in the invasive Dreissena polymorpha.
Scientific Reports | 2015
Daniel Graeber; Iola G. Boëchat; Francisco Encina-Montoya; Carlos Esse; Jörg Gelbrecht; Guillermo Goyenola; Björn Gücker; Marlen Heinz; Brian Kronvang; Mariana Meerhoff; Jorge Nimptsch; Martin T. Pusch; Ricky C. S. Silva; Daniel von Schiller; Elke Zwirnmann
Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.
Science of The Total Environment | 2015
Jorge Nimptsch; Stefan Woelfl; Sebastian Osorio; Jose Valenzuela; Paul Ebersbach; Wolf von Tuempling; Rodrigo Palma; Francisco Encina; David Figueroa; Norbert Kamjunke; Daniel Graeber
Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.
Nova Hedwigia | 2010
N. Thanh Son Dao; Gertrud Cronberg; Jorge Nimptsch; Do-Hong Lan-Chi; Claudia Wiegand
Seven strains of cyanobacteria from Tri An Reservoir, a drinking water reservoir for millions of people in Southern Vietnam, were isolated, cultivated, identified and described. They originated from the species Microcystis aeruginosa, M. botrys, M. wesenbergii, Anabaena A. smithii, Aphanizomenon aphanizomenoides and Cylindrospermopsis raciborskii. Microcystin (MC) content in the cultures and two scum samples from Tri An Reservoir were determined by high performance liquid chromatography. Four variants of MC, MC-LR, MC-RR, MC-LA, MC-LY and one un-determined variant were detected in the scum samples but none were found in the cultures. The two variants MC-LA and MC-LY were recorded for the first time for Vietnam. Total MC concentrations in the two scum samples were 0.45 and 0.64 mg g(-1) dried weight, respectively. The genus Microcystis in Tri An Reservoir was assumed to be a MC producer as the other possible MC producing species A. circinalis was usually detected in lower quantities.
Scientific Reports | 2017
Norbert Kamjunke; Jorge Nimptsch; Mourad Harir; Peter Herzsprung; Philippe Schmitt-Kopplin; Thomas R. Neu; Daniel Graeber; Sebastian Osorio; Jose Valenzuela; Juan Carlos Reyes; Stefan Woelfl; Norbert Hertkorn
Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.
Journal of Water and Health | 2016
Thanh-Son Dao; Jorge Nimptsch; Claudia Wiegand
This study evaluates the water quality from Tri An Reservoir, a drinking water supply for several million people in southern Vietnam, in terms of cyanobacterial biomass and their potent toxins, microcystins (MCs). Cyanobacteria, their toxins and environmental parameters were monitored monthly for 1 year (April 2008-March 2009) at six stations covering a transect through the reservoir. Dynamics of cyanobacterial abundance in relation to cyanobacterial biomass, toxins and environmental factors were investigated. Environmental variables from Tri An Reservoir favored algal and cyanobacterial development. However, cyanobacterial biomass and proportion varied widely, influenced by physical conditions, available nutrients and nutrient competition among the phytoplankton groups. Cyanobacterial biomass correlated slightly positively to temperature, pH and biochemical oxygen demand (BOD5), but negatively to total inorganic nitrogen concentrations. During most of the sampling times, MC concentrations in the reservoir were quite low (≤0.07 μg L(-1) MC-LR equivalent), and presented a slight positive correlation to BOD5, total nitrogen:total phosphorus ratio and cyanobacterial biomass. However, in cyanobacterial scum samples, which now and then occurred in the reservoir, MC concentrations reached up to 640 μg g(-1) DW(-1). The occurrence of MC in the reservoir poses a risk to local residents who use the water daily for domestic purposes.
Integrated Environmental Assessment and Management | 2017
Ignacio A. Rodriguez-Jorquera; Pablo A. Siroski; Winfred Espejo; Jorge Nimptsch; Paloma Gusso Choueri; Rodrigo Brasil Choueri; Claudio A Moraga; Miguel A. Mora; Gurpal S. Toor
Protected areas (PAs) are critically important means to preserve species and maintain natural ecosystems. However, the potential impacts of chemical pollution on PAs are seldom mentioned in the scientific literature. Research on the extent of the occurrence of chemical pollution inside PAs and in-depth assessments of how chemical contaminants may adversely affect the maintenance of species abundance, species survival, and ecosystem functions are scarce to nonexistent. We investigated 1) the occurrence of chemical contaminants inside 119 PAs in Latin America from publically available databases, and 2) reviewed case studies of chemical contaminants and pollution in 4 Latin American PAs. Cases of chemical pollution and contamination inside Latin American PAs mostly originated from sources such as mining, oil, and gas extraction. To date, the focus of the research on chemical pollution research inside Latin American PAs has been primarily on the detection of contamination, typically limited to trace metals. Where management actions have occurred, they have been reactive rather than proactive. Protected areas established in wetlands are the most affected by chemical pollution. Based on the information from the pollution and/or contamination occurrence and the case studies analyzed, Latin American PAs are not well safeguarded from chemical pollution, resulting in both challenges and opportunities to conserve biodiversity and ecosystems. Integr Environ Assess Manag 2017;13:360-370.
Chemosphere | 2007
Jorge Nimptsch; Stephan Pflugmacher
Chemosphere | 2005
Jorge Nimptsch; Daniel A. Wunderlin; Anja Dollan; Stephan Pflugmacher
Environmental Science & Technology | 2008
Jorge Nimptsch; Claudia Wiegand; Stephan Pflugmacher