Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Ramón Vázquez-Padín is active.

Publication


Featured researches published by José Ramón Vázquez-Padín.


Journal of Hazardous Materials | 2009

Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

José Ramón Vázquez-Padín; M.J. Pozo; M. Jarpa; M. Figueroa; A. Franco; A. Mosquera-Corral; J.L. Campos; R. Méndez

The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 degrees C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g NL(-1)d(-1) due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g NL(-1)d(-1). By working at a dissolved oxygen concentration of 0.5 mg L(-1) in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L(-1). The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.


Bioresource Technology | 2009

Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature

José Ramón Vázquez-Padín; Isaac Fernádez; M. Figueroa; A. Mosquera-Corral; J.L. Campos; R. Méndez

The supernatant of an anaerobic digester was treated at 20 degrees C in two systems. The first one is a two units configuration, conformed by two sequencing batch reactors (SBR), carrying out partial nitrification and Anammox processes, respectively. Partial nitrification was achieved by granular biomass with a mean diameter of 3 mm, operating at a dissolved oxygen concentration of 2.7 mg/L. The combined system allowed the removal of nitrogen loading rates around 0.08 g N/(Ld). Afterwards, Anammox biomass was spontaneously developed in the inner core of the nitrifying granules of the SBR and therefore, partial nitrification and Anammox process were carried out in a single unit. Once the stable CANON process was established, a mean nitrogen removal rate of 0.8 g N/(Ld) was registered. The settling velocities of the granules ranged from 70 to 150 m/h with sludge volumetric index values lower than 50 mL/g VSS during the whole operation.


Water Science and Technology | 2011

Autotrophic nitrogen removal at low temperature

José Ramón Vázquez-Padín; I. Fernández; Nicolás Morales; J.L. Campos; A. Mosquera-Corral; R. Méndez

In this work the autotrophic nitrogen removal was carried out at moderately low temperatures using two configurations: a) two-units one comprising a SHARON reactor coupled to an Anammox SBR and b) single-unit one consisting of a granular SBR performing the CANON process. At 20°C the two-units system was limited by the Anammox step and its nitrogen removal capacity was around ten times lower than the CANON system (0.08 g N/(L d) versus 1 g N/(L d)). When the CANON system was operated at 15°C the average removed nitrogen loading rate decreased to 0.2 g N/(L d). The CANON system was operated in order to limit the ammonia oxidation rate to avoid nitrite inhibition of Anammox bacteria. Since both, temperature and dissolved oxygen (DO) concentration regulate ammonia oxidizing bacteria activity, once the temperature of the reactor is decreased the DO concentration must be decreased to avoid the deeper oxygen penetration inside the granule which could cause inhibition of Anammox bacteria by oxygen and/or nitrite.


Water Research | 2010

Microbial community distribution and activity dynamics of granular biomass in a CANON reactor

José Ramón Vázquez-Padín; A. Mosquera-Corral; J.L. Campos; R. Méndez; Niels Peter Revsbech

The application of microelectrodes to measure oxygen and nitrite concentrations inside granules operated at 20 degrees C in a CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) reactor and the application of the FISH (Fluorescent In Situ Hybridization) technique to cryosectioned slices of these granules showed the presence of two differentiated zones inside of them: an external nitrification zone and an internal anammox zone. The FISH analysis of these layers allowed the identification of Nitrosomonas spp. and Candidatus Kuenenia Stutgartiensis as the main populations carrying out aerobic and anaerobic ammonia oxidation, respectively. Concentration microprofiles measured at different oxygen concentrations in the bulk liquid (from 1.5 to 35.2 mg O(2) L(-1)) revealed that oxygen was consumed in a surface layer of 100-350 microm width. The obtained consumption rate of the most active layers was of 80 g O(2) (L(granule))(-1) d(-1). Anammox activity was registered between 400 and 1000 microm depth inside the granules. The nitrogen removal capacity of the studied sequencing batch reactor containing the granular biomass was of 0.5 g N L(-1) d(-1). This value is similar to the mean nitrogen removal rate obtained from calculations based on in- and outflow concentrations. Information obtained in the present work allowed the establishment of a simple control strategy based on the measurements of NH(4)(+) and NO(2)(-) in the bulk liquid and acting over the dissolved oxygen concentration in the bulk liquid and the hydraulic retention time of the reactor.


Chemosphere | 2015

Integration of the Anammox process to the rejection water and main stream lines of WWTPs.

Nicolás Morales; Ángeles Val del Río; José Ramón Vázquez-Padín; R. Méndez; A. Mosquera-Corral; J.L. Campos

Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary.


Science of The Total Environment | 2014

Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant

G. Rodriguez-Garcia; José Ramón Vázquez-Padín; Almudena Hospido; J.M. Garrido; Francesco Fatone; D. Bolzonella; M.T. Moreira; Gumersindo Feijoo

The supernatant resulting from the anaerobic digestion of sludge generated by wastewater treatment plants (WWTP) is an attractive flow for technologies such as partial nitritation-anammox (CANON), nitrite shortcut (NSC) and struvite crystallization processes (SCP). The high concentration of N and P and its low flow rate facilitate the removal of nutrients under more favorable conditions than in the main water line. Despite their operational and economic benefits, the environmental burdens of these technologies also need to be assessed to prove their feasibility under a more holistic perspective. The potential environmental implications of these technologies were assessed using life cycle assessment, first at pilot plant scale, later integrating them in a modeled full WWTP. Pilot plant results reported a much lower environmental impact for N removal technologies than SCP. Full-scale modeling, however, highlighted that the differences between technologies were not relevant once they are integrated in a WWTP. The impacts associated with the WWTP are slightly reduced in all categories except for eutrophication, where a substantial reduction was achieved using NSC, SCP, and especially when CANON and SCP were combined. This study emphasizes the need for assessing wastewater treatment technologies as part of a WWTP rather than as individual processes and the utility of modeling tools for doing so.


Water Science and Technology | 2009

Post-treatment of effluents from anaerobic digesters by the Anammox process.

José Ramón Vázquez-Padín; M. Figueroa; I. Fernández; A. Mosquera-Corral; J.L. Campos; R. Méndez

The application of the Anammox process was studied under two different approaches for the post-treatment of anaerobic digester supernatants: two independent units, the combined SHARON-Anammox system, performed in a chemostate and a SBR, respectively, and, a single unit system composed by an air pulsing SBR to carry out the CANON process. The technology based on the combination of the SHARON-Anammox process was used to treat the effluent of an anaerobic digester from a fish canning industry. The presence of organic matter in the influent caused fluctuations in the efficiency of the SHARON unit and an optimal nitrite to ammonium ratio was not achieved in this system to feed the Anammox reactor. Nevertheless an overall percentage of nitrogen removal of 40-80% was obtained when the Anammox reactor operated at nitrite limited conditions. In those periods when the effluent from the SHARON unit contained a NO2(-)-N/NH4(+)-N molar ratio higher than 1.3 the Anammox process lost its stability due to nitrite accumulation. The effluent from an anaerobic digester placed at a WWTP was treated by a CANON system operated at room temperature (20-24 degrees C). This system was developed from a nitrifying air pulsing reactor working at limiting dissolved oxygen conditions which was inoculated with Anammox biomass. A quick start-up of the system was observed and the reactor reached a nitrogen removal rate of 0.25 g N/(L d) 40 days after inoculation. The maximum nitrogen removal rate reached 0.5 g N/(L d). These results indicate the feasibility of the treatment of effluents from psychrophilic anaerobic digesters using the Anammox process.


Water Science and Technology | 2014

Implications of full-scale implementation of an anammox-based process as post-treatment of a municipal anaerobic sludge digester operated with co-digestion

José Ramón Vázquez-Padín; Nicolás Morales; R. Gutiérrez; R. Fernández; Frank Rogalla; J. P. Barrio; J.L. Campos; A. Mosquera-Corral; R. Méndez

The feasibility of treating the supernatant of a municipal sludge digester supplemented with co-substrates by means of an anammox-based process (ELAN(®)) was tested in Guillarei (NW of Spain). Ammonia concentration measured in the supernatant of the sludge digester varied in the range 800-1,500 g N/m(3) due to the fact that the sludge produced in the plant was co-digested with wastes coming from surrounding food industries. Treating this supernatant in the ELAN(®) reactor, nitrogen removal rates up to 1.1 kg N/(m(3) d) were reached in experiments run in a pilot plant reactor operated in batch mode. No nitrite oxidation was registered after several months of operation despite the average dissolved oxygen (DO) concentrations being 1.5 g O2/m(3) and the temperature reaching values as low as 18 °C. By keeping the DO set point at 1-2 g O2/m(3) and tuning the hydraulic retention time, the stability of the process was guaranteed and the presence of co-substrates in the anaerobic digester did not affect negatively the operation of the autotrophic nitrogen removal process. Due to the success of the pilot plant experiment, an upscale of the process to full scale is proposed. Mass balances applied to Guillarei wastewater treatment plant revealed that in the main stream line the average denitrification rate calculated with the data of year 2011 was 226 kg N/d. Since the nitrogen removal efficiency is limited by the amount of readily biodegradable organic matter available to carry out denitrification in the water line, the implementation of an anammox-based process to treat the supernatant seems the best option to improve the effluent quality in terms of nitrogen content. The nitrogen removal rate in the sludge line would be 30 times higher than the one in the water line. The implementation of the process would improve the energetic balance and the nitrogen removal performance of the plant.


Water Science and Technology | 2015

Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®

Nicolás Morales; A. Val del Río; José Ramón Vázquez-Padín; R. Gutiérrez; R. Fernández-González; P. Icaran; Frank Rogalla; J.L. Campos; R. Méndez; A. Mosquera-Corral

The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.


Water Science and Technology | 2009

Population dynamics of nitrite oxidizers in nitrifying granules

José Ramón Vázquez-Padín; M. Figueroa; A. Mosquera-Corral; J.L. Campos; R. Méndez

The competition between Nitrospira and Nitrobacter species was analyzed in this work under conditions of excess of nitrite. A population of nitrite oxidizing bacteria (NOB) was developed from nitrifying biomass grown as granules with a mean diameter of 0.8 mm, whose feed was switched from ammonium to nitrite. The initial population distribution of the granules was: 60% Nitrosomonas and 30% Nitrospira and it evolved to 45% Nitrobacter and 40% Nitrospira measured 177 days after the change in the feeding. The disappearance of Nitrosomonas allowed the development of an important population of Nitrobacter demonstrating that these organisms, characterized by being r strategists NOB, are poor competitors when oxygen is the limiting substrate. Interestingly, the physical structure of the granules was not altered by the change of its microbial composition during the 220 days of operation.

Collaboration


Dive into the José Ramón Vázquez-Padín's collaboration.

Top Co-Authors

Avatar

J.L. Campos

Adolfo Ibáñez University

View shared research outputs
Top Co-Authors

Avatar

A. Mosquera-Corral

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

R. Méndez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

M. Figueroa

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Nicolás Morales

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ángeles Val del Río

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Alba Pedrouso

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

J.M. Garrido

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

A. Franco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Gumersindo Feijoo

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge