Nicolás Morales
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolás Morales.
Water Science and Technology | 2011
José Ramón Vázquez-Padín; I. Fernández; Nicolás Morales; J.L. Campos; A. Mosquera-Corral; R. Méndez
In this work the autotrophic nitrogen removal was carried out at moderately low temperatures using two configurations: a) two-units one comprising a SHARON reactor coupled to an Anammox SBR and b) single-unit one consisting of a granular SBR performing the CANON process. At 20°C the two-units system was limited by the Anammox step and its nitrogen removal capacity was around ten times lower than the CANON system (0.08 g N/(L d) versus 1 g N/(L d)). When the CANON system was operated at 15°C the average removed nitrogen loading rate decreased to 0.2 g N/(L d). The CANON system was operated in order to limit the ammonia oxidation rate to avoid nitrite inhibition of Anammox bacteria. Since both, temperature and dissolved oxygen (DO) concentration regulate ammonia oxidizing bacteria activity, once the temperature of the reactor is decreased the DO concentration must be decreased to avoid the deeper oxygen penetration inside the granule which could cause inhibition of Anammox bacteria by oxygen and/or nitrite.
Water Research | 2011
A. Val del Río; Nicolás Morales; Eduardo Isanta; A. Mosquera-Corral; J.L. Campos; J.P. Steyer; Hélène Carrère
The aerobic granular systems are a good alternative to the conventional activated sludge (AS) ones to reduce the production of sludge generated in wastewater treatment plants (WWTP). Although the quantity of produced sludge is low its post-treatment is still necessary. In the present work the application of the anaerobic digestion combined with a thermal pre-treatment was studied to treat two different aerobic granular biomasses: one from a reactor fed with pig manure (G1) and another from a reactor fed with a synthetic medium to simulate an urban wastewater (G2). The results obtained with the untreated aerobic granular biomasses showed that their anaerobic biodegradability (BD) (33% for G1 and 49% for G2) was similar to that obtained for an activated sludge (30-50%) and demonstrate the feasibility of their anaerobic digestion. The thermal pre-treatment before the anaerobic digestion was proposed as a good option to enhance the BD when this was initially low (33% G1) with an enhancement between 20% at 60 °C and 88% at 170 °C with respect to the untreated sludge. However when the initial BD was higher (49% G2) the thermal pre-treatment produced a slight improvement in the methane production (14% and 18%) and at high temperatures (190 and 210 °C) which did not justify the application of such a treatment.
Chemosphere | 2015
Nicolás Morales; Ángeles Val del Río; José Ramón Vázquez-Padín; R. Méndez; A. Mosquera-Corral; J.L. Campos
Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary.
Water Science and Technology | 2014
José Ramón Vázquez-Padín; Nicolás Morales; R. Gutiérrez; R. Fernández; Frank Rogalla; J. P. Barrio; J.L. Campos; A. Mosquera-Corral; R. Méndez
The feasibility of treating the supernatant of a municipal sludge digester supplemented with co-substrates by means of an anammox-based process (ELAN(®)) was tested in Guillarei (NW of Spain). Ammonia concentration measured in the supernatant of the sludge digester varied in the range 800-1,500 g N/m(3) due to the fact that the sludge produced in the plant was co-digested with wastes coming from surrounding food industries. Treating this supernatant in the ELAN(®) reactor, nitrogen removal rates up to 1.1 kg N/(m(3) d) were reached in experiments run in a pilot plant reactor operated in batch mode. No nitrite oxidation was registered after several months of operation despite the average dissolved oxygen (DO) concentrations being 1.5 g O2/m(3) and the temperature reaching values as low as 18 °C. By keeping the DO set point at 1-2 g O2/m(3) and tuning the hydraulic retention time, the stability of the process was guaranteed and the presence of co-substrates in the anaerobic digester did not affect negatively the operation of the autotrophic nitrogen removal process. Due to the success of the pilot plant experiment, an upscale of the process to full scale is proposed. Mass balances applied to Guillarei wastewater treatment plant revealed that in the main stream line the average denitrification rate calculated with the data of year 2011 was 226 kg N/d. Since the nitrogen removal efficiency is limited by the amount of readily biodegradable organic matter available to carry out denitrification in the water line, the implementation of an anammox-based process to treat the supernatant seems the best option to improve the effluent quality in terms of nitrogen content. The nitrogen removal rate in the sludge line would be 30 times higher than the one in the water line. The implementation of the process would improve the energetic balance and the nitrogen removal performance of the plant.
Water Science and Technology | 2015
Nicolás Morales; A. Val del Río; José Ramón Vázquez-Padín; R. Gutiérrez; R. Fernández-González; P. Icaran; Frank Rogalla; J.L. Campos; R. Méndez; A. Mosquera-Corral
The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.
Biotechnology Progress | 2016
Andrea Fra-Vázquez; Nicolás Morales; M. Figueroa; A. Val del Río; L. Regueiro; J.L. Campos; A. Mosquera-Corral
Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process.
Environmental Technology | 2013
A. Val del Río; Nicolás Morales; M. Figueroa; A. Mosquera-Corral; J.L. Campos; R. Méndez
The aerobic granular systems are mainly sequencing batch reactors where the biomass is submitted to feast–famine regimes to promote its aggregation in the form of granules. In these systems, different cycle distributions can be applied for the simultaneous removal of organic matter, nitrogen and phosphorus. In this work two strategies were followed in order to evaluate the effects of the cycle distribution. In the first experiment, the length of the operational cycle was decreased in order to maximize the treatment capacity and consequently the famine/feast ratio was also decreased. In the second experiment, an initial anoxic phase was implemented to improve nitrogen removal efficiency. The results obtained showed that to reduce the famine/feast ratio from 10 to 5 was possible by increasing the treated organic and nitrogen loading rates in the system to 33%, without affecting the removal efficiencies of organic matter (97%) and nitrogen (64%) and producing a slight detriment of the granules characteristics. On the other hand, the implementation of an anoxic phase of 30 min previous to the aerobic one with a pulse-fed mode increased the nitrogen removal of pig manure from 20 to 60%, while the cycle configuration comprising a continuous feeding simultaneous with an anoxic phase of 60 min did not enhance the nitrogen removal and even worsen the ammonia oxidation.
Journal of Environmental Management | 2018
Andrea Arias; Iana Salim; Alba Pedrouso; Nicolás Morales; A. Mosquera-Corral; José Ramón Vázquez-Padín; Frank Rogalla; Gumersindo Feijoo; María Teresa Moreira
In recent decades, the wastewater treatment sector has undergone a shift to adapt to increasing discharge limits. In addressing the evaluation of innovative technologies, it is necessary to determine the scale at which reliable and representative values of environmental impacts and costs can be obtained, ensuring that the system under assessment follows the direction of eco-efficiency. This study has evaluated the environmental and economic indicators of an autotrophic nitrogen removal technology (ELAN®) from laboratory conception (1.5 L) to full scale (2 units of 115 m3) using the Life Cycle Assessment (LCA) methodology. Indirect emissions related to electricity consumption are the main contributor in all impact categories except eutrophication. Electricity consumption referred to the functional unit (1 m3 of treated wastewater) decreases as the scale increases. The rationale behind this can be explained, among other reasons, by the low energy efficiency of small-scale equipment (pumps and aerators). Accordingly, a value of approximately 25 kg CO2eq per m3 of treated water is determined for laboratory scale, compared to only 5 kg CO2eq per m3 at full-scale. When it comes to assessing the reliability of data, a pilot scale system of 0.2 m3 allowed to perform a trustworthy estimation of environmental indicators, which were validated at full-scale. In terms of operational costs, the scale of approximately 1 m3 provided a more accurate estimate of the costs associated with energy consumption.
Chemical Engineering Journal | 2012
Eduardo Isanta; María Eugenia Suárez-Ojeda; Ángeles Val del Río; Nicolás Morales; Julio Pérez; Julián Carrera
Process Biochemistry | 2013
Nicolás Morales; M. Figueroa; Andrea Fra-Vázquez; A. Val del Río; J.L. Campos; A. Mosquera-Corral; R. Méndez