Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josep Baulida is active.

Publication


Featured researches published by Josep Baulida.


Nature Cell Biology | 2000

The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells.

Eduard Batlle; Elena Sancho; Clara Francí; David Domı́nguez; Mercè Monfar; Josep Baulida; Antonio García de Herreros

The adhesion protein E-cadherin plays a central part in the process of epithelial morphogenesis. Expression of this protein is downregulated during the acquisition of metastatic potential at late stages of epithelial tumour progression. There is evidence for a transcriptional blockage of E-cadherin gene expression in this process. Here we show that the transcription factor Snail, which is expressed by fibroblasts and some E-cadherin-negative epithelial tumour cell lines, binds to three E-boxes present in the human E-cadherin promoter and represses transcription of E-cadherin. Inhibition of Snail function in epithelial cancer cell lines lacking E-cadherin protein restores the expression of the E-cadherin gene.


Journal of Cell Biology | 2001

Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling

Héctor G. Pálmer; José Manuel González-Sancho; Jesús Espada; Maria T. Berciano; Isabel Puig; Josep Baulida; Miguel Quintanilla; Amparo Cano; Antonio García de Herreros; Miguel Lafarga; Alberto Muñoz

The β-catenin signaling pathway is deregulated in nearly all colon cancers. Nonhypercalcemic vitamin D3 (1α,25-dehydroxyvitamin D3) analogues are candidate drugs to treat this neoplasia. We show that these compounds promote the differentiation of human colon carcinoma SW480 cells expressing vitamin D receptors (VDRs) (SW480-ADH) but not that of a malignant subline (SW480-R) or metastasic derivative (SW620) cells lacking VDR. 1α,25(OH)2D3 induced the expression of E-cadherin and other adhesion proteins (occludin, Zonula occludens [ZO]-1, ZO-2, vinculin) and promoted the translocation of β-catenin, plakoglobin, and ZO-1 from the nucleus to the plasma membrane. Ligand-activated VDR competed with T cell transcription factor (TCF)-4 for β-catenin binding. Accordingly, 1α,25(OH)2D3 repressed β-catenin–TCF-4 transcriptional activity. Moreover, VDR activity was enhanced by ectopic β-catenin and reduced by TCF-4. Also, 1α,25(OH)2D3 inhibited expression of β-catenin–TCF-4-responsive genes, c-myc, peroxisome proliferator-activated receptor δ, Tcf-1, and CD44, whereas it induced expression of ZO-1. Our results show that 1α,25(OH)2D3 induces E-cadherin and modulates β-catenin–TCF-4 target genes in a manner opposite to that of β-catenin, promoting the differentiation of colon carcinoma cells.


Journal of Biological Chemistry | 2002

Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression

Sandra Guaita; Isabel Puig; Clara Francí; Marta Garrido; David Domı́nguez; Eduard Batlle; Elena Sancho; Shoukat Dedhar; Antonio García de Herreros; Josep Baulida

E-cadherin protein plays a key role in the establishment and maintenance of adherent junctions. Recent evidence implicates the transcription factor Snail in the blockage of E-cadherin expression in fibroblasts and some epithelial tumor cells through direct binding to three E-boxes in the E-cadherin promoter. Transfection of Snail into epithelial cells leads to a more fibroblastic phenotype. Cells expressing Snail presented a scattered flattened phenotype with low intercellular contacts. Other epithelial markers like Cytokeratin 18 or MUC1 were also repressed. The effects of Snail on MUC1 transcription were mediated by two E-boxes present in the proximal promoter. Snail also induced expression of the mesenchymal markers fibronectin and LEF1 and the transcription repressor ZEB1. ZEB1 and Snail had a similar pattern of expression in epithelial cell lines, and both were induced by overexpression of ILK1, a kinase that causes the loss of E-cadherin and the acquisition of a fibroblastic phenotype. Snail overexpression in several cell lines raised ZEB1 RNA levels and increased the activity of ZEB1 promoter. ZEB1 could also repress E-cadherin and MUC1 promoters but less strongly than Snail. However, since ZEB1 expression persisted after Snail was down-regulated, ZEB1 may regulate epithelial genes in several tumor cell lines.


Oncogene | 2004

Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells.

Maria José Barberà; Isabel Puig; David Domı́nguez; Sylvia Julien-Grille; Sandra Peiró; Josep Baulida; Clara Francí; Shoukat Dedhar; Lionel Larue; Antonio García de Herreros

Expression of Snail transcriptional factor is a determinant in the acquisition of a mesenchymal phenotype by epithelial tumor cells. However, the regulation of the transcription of this gene is still unknown. We describe here the characterization of a human SNAIL promoter that contains the initiation of transcription and regulates the expression of this gene in tumor cells. This promoter was activated in cell lines in response to agents that induce Snail transcription and the mesenchymal phenotype, as addition of the phorbol ester PMA or overexpression of integrin-linked kinase (ILK) or oncogenes such as Ha-ras or v-Akt. Although other regions of the promoter were required for a complete stimulation by Akt or ILK, a minimal fragment (−78/+59) was sufficient to maintain the mesenchymal specificity. Activity of this minimal promoter and SNAIL RNA levels were dependent on ERK signaling pathway. NFκB/p65 also stimulated SNAIL transcription through a region located immediately upstream the minimal promoter, between −194 and −78. These results indicate that Snail transcription is driven by signaling pathways known to induce epithelial to mesenchymal transition, reinforcing the role of Snail in this process.


Oncogene | 2001

Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/-human colon carcinoma cells

Clara Tan; Penny Costello; Jasbinder S. Sanghera; David Domı́nguez; Josep Baulida; Antonio García de Herreros; Shoukat Dedhar

Loss of functional adenomatous polyposis coli (APC) protein results in the stabilization of cytosolic β-catenin and activation of genes that are responsive to Lef/Tcf family transcription factors. We have recently shown that an independent cell adhesion and integrin linked kinase (ILK)-dependent pathway can also activate β-catenin/LEF mediated gene transcription and downregulate E-cadherin expression. In addition, ILK activity and expression are elevated in adenomatous polyposis and colon carcinomas. To examine the role of this pathway in the background of APC mutations we inhibited ILK activity in APC−/− human colon carcinoma cell lines. In all cases, inhibition of ILK resulted in substantial inhibition of TCF mediated gene transcription and inhibition of transcription and expression of the TCF regulated gene, cyclin D1. Inhibition of ILK resulted in decreased nuclear beta-catenin expression, and in the inhibition of phosphorylation of GSK-3 and stimulation of its activity, leading to accelerated degradation of β-catenin. In addition, inhibition of ILK suppressed cell growth in culture as well as growth of human colon carcinoma cells in SCID mice. Strikingly, inhibition of ILK also resulted in the transcriptional stimulation of E-cadherin expression and correlated with the inhibition of gene transcription of snail, a repressor of E-cadherin gene expression. Overexpression of ILK caused a stimulation of expression of snail, but snail expression was found not to be regulated by β-catenin/Tcf. These data demonstrate that ILK can regulate β-catenin/TCF and snail transcription factors by distinct pathways. We propose that inhibition of ILK may be a useful strategy in the control of progression of colon as well as other carcinomas.


Molecular and Cellular Biology | 2003

Phosphorylation Regulates the Subcellular Location and Activity of the Snail Transcriptional Repressor

David Domı́nguez; Bàrbara Montserrat-Sentís; Ariadna Virgós-Soler; Sandra Guaita; Judit Grueso; Montserrat Porta; Isabel Puig; Josep Baulida; Clara Francí; Antonio García de Herreros

ABSTRACT The Snail gene product is a transcriptional repressor of E-cadherin expression and an inducer of the epithelial-to-mesenchymal transition in several epithelial tumor cell lines. This report presents data indicating that Snail function is controlled by its intracellular location. The cytosolic distribution of Snail depended on export from the nucleus by a CRM1-dependent mechanism, and a nuclear export sequence (NES) was located in the regulatory domain of this protein. Export of Snail was controlled by phosphorylation of a Ser-rich sequence adjacent to this NES. Modification of this sequence released the restriction created by the zinc finger domain and allowed nuclear export of the protein. The phosphorylation and subcellular distribution of Snail are controlled by cell attachment to the extracellular matrix. Suspended cells presented higher levels of phosphorylated Snail and an augmented extranuclear localization with respect to cells attached to the plate. These findings show the existence in tumor cells of an effective and fine-tuning nontranscriptional mechanism of regulation of Snail activity dependent on the extracellular environment.


Journal of Biological Chemistry | 1996

Selective Cleavage of the Heregulin Receptor ErbB-4 by Protein Kinase C Activation

Manuela Vecchi; Josep Baulida; Graham Carpenter

The 180-kDa transmembrane tyrosine kinase ErbB-4 is a receptor for the growth factor heregulin. 125I-Heregulin binding to NIH 3T3 cells overexpressing the ErbB-4 receptor is rapidly decreased by 12-O-tetradecanoylphorbol-13-acetate (TPA) pretreatment. Immunologic analysis demonstrates that TPA treatment of cells induces the proteolytic cleavage of ErbB-4, producing an 80-kDa cytoplasmic domain fragment, which contains a low level of phosphotyrosine, and a 120-kDa ectodomain fragment, which is released into the extracellular medium. Cleavage of ErbB-4 was also enhanced by other protein kinase C activators, i.e. platelet-derived growth factor, ionomycin, and synthetic diacylglycerol, while protein kinase C inhibition or down-regulation suppressed the TPA stimulation of ErbB-4 degradation. TPA did not induce the degradation of related receptors (ErbB-1, ErbB-2, and ErbB-3) in the EGF receptor family. The phorbol ester-induced cleavage of ErbB-4 occurs within or close to the ectodomain, as the 80-kDa cytoplasmic domain fragment is recognized by antibody to the ErbB-4 carboxyl terminus and is membrane-associated. Coprecipitation experiments show that, while the 80-kDa ErbB-4 fragment is associated with the SH2-containing molecules PLC-γ1 and Shc, TPA did not induce the phosphorylation of these substrates in intact cells. In addition, kinase assays in vitro indicate that the 80-kDa fragment is not an active tyrosine kinase. These results show that protein kinase C negatively regulates heregulin signaling through the ErbB-4 receptor by the activation of a selective proteolytic mechanism.


Nucleic Acids Research | 2006

Snail1 transcriptional repressor binds to its own promoter and controls its expression

Sandra Peiró; Maria Escrivà; Isabel Puig; Maria José Barberà; Natàlia Dave; Nicolás Herranz; María Jesús Larriba; Minna Takkunen; Clara Francí; Alberto Muñoz; Ismo Virtanen; Josep Baulida; Antonio García de Herreros

The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial–mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at −146 with respect to the transcription start) and represses its activity. Therefore, mutation of the E-box increases Snail1 transcription in epithelial and mesenchymal cells. Evidence of binding of ectopic or endogenous Snail1 to its own promoter was obtained by chromatin immunoprecipitation (ChIP) experiments. Studies performed expressing different forms of Snail1 under the control of its own promoter demonstrate that disruption of the regulatory loop increases the cellular levels of Snail protein. These results indicate that expression of Snail1 gene can be regulated by its product and evidence the existence of a fine-tuning feed-back mechanism of regulation of Snail1 transcription.


Journal of Cell Science | 2008

E-cadherin controls β-catenin and NF-κB transcriptional activity in mesenchymal gene expression

Guiomar Solanas; Montserrat Porta-de-la-Riva; Cristina Agustí; David Casagolda; Francisco Sánchez-Aguilera; María Jesús Larriba; Ferran Pons; Sandra Peiró; Maria Escrivà; Alberto Muñoz; Mireia Duñach; Antonio García de Herreros; Josep Baulida

E-cadherin and its transcriptional repressor Snail1 (Snai1) are two factors that control epithelial phenotype. Expression of Snail1 promotes the conversion of epithelial cells to mesenchymal cells, and occurs concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as those encoding fibronectin and LEF1. We studied the molecular mechanism controlling the expression of these genes in mesenchymal cells. Forced expression of E-cadherin strongly downregulated fibronectin and LEF1 RNA levels, indicating that E-cadherin-sensitive factors are involved in the transcription of these genes. E-cadherin overexpression decreased the transcriptional activity of the fibronectin promoter and reduced the interaction of β-catenin and NF-κB with this promoter. Similar to β-catenin, NF-κB was found, by co-immunoprecipitation and pull-down assays, to be associated with E-cadherin and other cell-adhesion components. Interaction of the NF-κB p65 subunit with E-cadherin or β-catenin was reduced when adherens junctions were disrupted by K-ras overexpression or by E-cadherin depletion using siRNA. These conditions did not affect the association of p65 with the NF-κB inhibitor IκBα. The functional significance of these results was stressed by the stimulation of NF-κB transcriptional activity, both basal and TNF-α-stimulated, induced by an E-cadherin siRNA. Therefore, these results demonstrate that E-cadherin not only controls the transcriptional activity of β-catenin but also that of NF-κB. They indicate too that binding of this latter factor to the adherens junctional complex prevents the transcription of mesenchymal genes.


Journal of Biological Chemistry | 2010

The hypoxia-controlled FBXL14 ubiquitin ligase targets Snail1 for proteasome degradation

Rosa Viñas-Castells; Manuel Beltran; Gabriela Valls; Irene Gómez; José Miguel López García; Bàrbara Montserrat-Sentís; Josep Baulida; Félix Bonilla; Antonio García de Herreros; Víctor M. Díaz

The transcription factor SNAIL1 is a master regulator of epithelial to mesenchymal transition. SNAIL1 is a very unstable protein, and its levels are regulated by the E3 ubiquitin ligase β-TrCP1 that interacts with SNAIL1 upon its phosphorylation by GSK-3β. Here we show that SNAIL1 polyubiquitylation and degradation may occur in conditions precluding SNAIL1 phosphorylation by GSK-3β, suggesting that additional E3 ligases participate in the control of SNAIL1 protein stability. In particular, we demonstrate that the F-box E3 ubiquitin ligase FBXl14 interacts with SNAIL1 and promotes its ubiquitylation and proteasome degradation independently of phosphorylation by GSK-3β. In vivo, inhibition of FBXl14 using short hairpin RNA stabilizes both ectopically expressed and endogenous SNAIL1. Moreover, the expression of FBXl14 is potently down-regulated during hypoxia, a condition that increases the levels of SNAIL1 protein but not SNAIL1 mRNA. FBXL14 mRNA is decreased in tumors with a high expression of two proteins up-regulated in hypoxia, carbonic anhydrase 9 and TWIST1. In addition, Twist1 small interfering RNA prevents hypoxia-induced Fbxl14 down-regulation and SNAIL1 stabilization in NMuMG cells. Altogether, these results demonstrate the existence of an alternative mechanism controlling SNAIL1 protein levels relevant for the induction of SNAIL1 during hypoxia.

Collaboration


Dive into the Josep Baulida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Muñoz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Félix Bonilla

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Isabel Puig

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

María Jesús Larriba

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mercedes Herrera

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge