Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph R. Pawlik is active.

Publication


Featured researches published by Joseph R. Pawlik.


Science | 1991

Hydrodynamic Facilitation of Gregarious Settlement of a Reef-Building Tube Worm

Joseph R. Pawlik; Cheryl Ann Butman; Victoria R. Starczak

Experiments testing the effects of hydrodynamic processes and chemical cues on substrate selection were conducted with larvae of the marine tube worm Phragmatopoma lapidosa californica. In flume experiments, larvae were presented an array of sand treatments, including two substrates previously shown to induce metamorphosis in this species, under fast and slow flow regimes. Larvae preferentially metamorphosed on the inductive substrates in both flows. Delivery to the array was higher in fast flow because larvae tumbled along the bottom, whereas in slow flow, larvae were observed swimming in the water column. Thus, in addition to chemical cues, behavioral responses to flow conditions may play an important role in larval recruitment to the benthos.


Marine Biology | 1996

Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges

M. Dunlap; Joseph R. Pawlik

Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.


Journal of Experimental Marine Biology and Ecology | 1988

Defensive chemicals of the Spanisch dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet

Joseph R. Pawlik; Michael R. Kernan; Tadeusz F. Molinski; Mary Kay Harper; D. John Faulkner

Abstract The Spanish dancer nudibranch Hexabranchus sanguineus (Ruppell et Leuckart), a large brightly colored shell-less sea slug (Gastropoda : Opisthobranchia) common to Indo-Pacific coral reefs, derives a potent chemical defense from a sponge that it eats ( Halichondria sp.). In turn, the nudibranch passes defensive compounds to its egg ribbons, which are similarly conspicuous and physically defenseless. Slices of the dorsal mantle tissue of the nudibranch were rejected in laboratory feeding assays employing two common sympatric predators: an Indo-Pacific reef fish, Thalassoma lunare (Linnaeus), and a reef hermit crab, Dardanus megistos (Herbst). The defensive metabolites, a suite of unusual oxazole-containing macrolides, were isolated from the sponge, the nudibranch, and the nudibranch egg masses at 0.14–0.38, 0.14–0.62, and 2.65% of dry weight, respectively, and were effective inhibitors of feeding by T. lunare at minimum concentrations of 0.01–0.02% dry weight of food pellet. The macrolides were concentrated in the dorsal mantle of the nudibranch, which is most vulnerable to predatory attack, and in the combined digestive gland/gonad, site of both sponge digestion and egg production. The most abundant macrolide in the sponge tissue was not present in the nudibranch or its egg masses, suggesting that chemical modification of this compound takes place upon digestion. In a reef environment dominated by visually oriented predators, the striking color pattern and behavioral responses of Hexabranchus may have arisen with a concomitant elaboration of dietarily derived chemical defenses.


Oecologia | 1989

Seaweed-herbivore-predator interactions: host-plant specialization reduces predation on small herbivores

Mark E. Hay; Joseph R. Pawlik; J. Emmett Duffy; William Fenical

SummaryBecause feeding specialization among marine herbivores is rare, marine communities provide a simplified system for identifying factors selecting for specialization. On Australias Great Barrier Reef, we investigated interactions among the chemically-defended seaweed Chlorodesmis fastigiata, herbivores specialized on this alga, and potential predators of these herbivores. Chlorodesmis is a low preference food for reef fishes but appears to be the only food of the crab Caphyra rotundifrons and the ascoglossan gastropods Elysia sp. and Cyerce nigricans. The crab is found only in patches of Chlorodesmis, feeds solely on the alga, and selectively shelters in it in laboratory choice experiments. Crab grazing on the red seaweed Acanthophora spicifera was stimulated when this alga was coated with increasing concentrations of the cytotoxic diterpenoid chlorodesmin, the major secondary metabolite of Chlorodesmis. Crabs did not sequester Chlorodesmis metabolites but avoided predators by sheltering in the unpalatable alga. All crabs tethered on the reef without access to Chlorodesmis patches were rapidly eaten; those with access to Chlorodesmis patches were much less susceptible to predation. The cryptic ascoglossan Elysia sp. was found exclusively in patches of Chlorodesmis and sequestered metabolites from the alga. Living Elysia were unpalatable to the common wrasse Thalassoma lunare in laboratory assays, but the crude organic extract of Elysia did not significantly deter feeding by Thalassoma. Elysia sequestered chlorodesmin, which deterred feeding by reef fishes in field assays but was ineffective against Thalassoma in laboratory assays at 5% food dry mass. Unlike Elysia, the aposematically colored ascoglossan Cyerce nigricans sequestered Chlorodesmis metabolites in relatively small amounts, but produced larger amounts of unrelated polypropionate compounds. Cyerce were never attacked by fishes and the crude organic extract of this slug strongly deterred feeding by wrasses in laboratory assays. The dorid nudibranch Gymnodoris sp. was found only in Chlorodesmis patches and appeared to be a specialized predator on Elysia; it would not prey on Cyerce. Data from this and other recent investigations demonstrate that some small marine herbivores feed selectively or exclusively on seaweeds that are chemically defended from fishes. This association reduces predation on the herbivores and suggests that escape from and deterrence of predation may be a dominant factor selecting for specialization among these herbivores.


Marine Biology | 1986

Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta)

Joseph R. Pawlik

Naturally-occurring lipophilic inducers of larval settlement and metamorphosis wer isolated and identified for Phragmatopoma californica, a gregarious tube worm from southern California. Organic solvent extraction of the sand/organic cement matrix of tubes diminished the inducing capacity of the tube matrix. The inducing capacity was restricted to a single, highly active, HPLC-purified fraction of the organic solvent extract. Chemical analysis of this fraction revealed a mixture of free fatty acids (FFAs), dominated by eicosapentaenoic acid (20:5, ∼20%), palmitic acid (16:0, ∼14%) and palmitoleic acid (16:1, ∼12%). In assays of the nine FFAs that each contributed 3% or more to the active fraction, only 16:1, 18:2, 20:4 and 20:5 induced larval settlement and metamorphosis, while the others were ineffective. The larval response was contact-dependent, highly specific, and concentration-dependent, with a significant response to 16:1 and 20:4 at as low as 10 μg FFA spread onto 1 g of sand (surface area ⋟36 cm2). Active FFAs were extracted at approximately 14 μg g-1 sand from the tube matrix, although the levels encountered by larvae in nature are believed to be higher.


BioScience | 2011

The Chemical Ecology of Sponges on Caribbean Reefs: Natural Products Shape Natural Systems

Joseph R. Pawlik

Sponges are now the dominant habitat-forming animals on Caribbean reefs, where the combined effects of climate change, pollution, and disease have decimated reef-building corals. Natural products chemists have been isolating novel secondary metabolites from Caribbean sponges for many decades, but relevant studies of the ecological functions of these compounds have been more recent. Bioassay-guided surveys have revealed sponge chemical defenses against predators, competitors, and pathogens, but many common sponge species lack chemical defenses and appear to have followed a different evolutionary trajectory, investing instead in greater reproduction or growth. The emerging conceptual model predicts that changes in the abundances of fish- and sponge-eating fishes on Caribbean reefs will have a cascading impact on the sponge community, with indirect effects on the broader community of corals and seaweeds. Caribbean sponges provide an important alternative to terrestrial plant and insect communities for testing basic ecological theories about chemical defenses and resource allocation.


Journal of Experimental Marine Biology and Ecology | 2002

Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids?

Daniel P. Pisut; Joseph R. Pawlik

Both secondary metabolites and inorganic acids have been hypothesized to protect adult ascidians from predation, raising the possibility of alternative defensive strategies in these sessile, soft-bodied, benthic invertebrates. The objective of this investigation was to determine if ascidian species from the Western Atlantic have these chemical defenses against fish predators, and if so, to determine their location within the body of the ascidian. The palatability of crude organic extracts of whole ascidians, as well as the dissected tunics, viscera, and gonads (when possible) were determined at natural volumetric concentrations using laboratory feeding assays with the bluehead wrasse, Thalassoma bifasciatum. Acidified food pellets were also assayed to determine the effect of lowered pH on predation. Sixteen of the 17 species tested had deterrent organic extracts from some region of the body (Aplidium constellatum, Aplidium stellatum, Ascidia interrupta, Ascidia nigra, Botrylloides sp., Clavellina picta, Didemnum candidum, Didemnum vanderhosti, Diplosoma listerianum, Ecteinascidia turbinata, Eudistoma capsulatum, Eudistoma hepaticum, Rhopalaea abdominalis, Styela plicata, Symplegma rubra, and Trididemnum solidum). The location of the deterrent secondary metabolites was isolated in the gonad in all three solitary species, raising the possibility that these defenses are passed on to eggs or larvae. Nine ascidian species sequestered acid in their tunics (A. interrupta, A. nigra, A. stellatum, D. candidum, D. vanderhosti, E. capsulatum, E. hepaticum, R. abdominalis, and T. solidum) at levels that were effective in deterring fish predation (pH≤3.0). Only one species (Botrylloides nigrum) had neither chemical defense. Results of this study indicate that there is not a clear trade-off between the presence of secondary metabolites and inorganic acid defenses in ascidians, suggesting that these defenses are redundant, or that alternative chemical defenses may have evolved for different predators or for different stages in the life history of the ascidians producing them.


Journal of Chemical Ecology | 2002

Does the odor from sponges of the genus Ircinia protect them from fish predators

Joseph R. Pawlik; Greg Mcfall; Sven Zea

Caribbean sponges of the genus Ircinia contain high concentrations of linear furanosesterterpene tetronic acids (FTAs) and produce and exude low-molecular-weight volatile compounds (e.g., dimethyl sulfide, methyl isocyanide, methyl isothiocyanate) that give these sponges their characteristic unpleasant garlic odor. It has recently been suggested that FTAs are unlikely to function as antipredatory chemical defenses, and this function may instead be attributed to bioactive volatiles. We tested crude organic extracts and purified fractions isolated from Ircinia campana, I. felix, and I. strobilina at naturally occurring concentrations in laboratory and field feeding assays to determine their palatability to generalist fish predators. We also used a qualitative technique to test the crude volatile fraction from I. felix and I. strobilina and dimethylsulfide in laboratory feeding assays. Crude organic extracts of all three species deterred feeding of fishes in both aquarium and field experiments. Bioassay-directed fractionation resulted in the isolation of the FTA fraction as the sole active fraction of the nonvolatile crude extract for each species, and further assays of subfractions suggested that feeding deterrent activity is shared by the FTAs. FTAs deterred fish feeding in aquarium assays at concentrations as low as 0.5 mg/ml (fraction B, variabilin), while the natural concentrations of combined FTA fractions were >5.0 mg/ml for all three species. In contrast, natural mixtures of volatiles transferred from sponge tissue to food pellets and pure dimethylsulfide incorporated into food pellets were readily eaten by fish in aquarium assays. Although FTAs may play other ecological roles in Ircinia spp., these compounds are effective as defenses against potential predatory fishes. Volatile compounds may serve other defensive functions (e.g., antimicrobial, antifouling) but do not appear to provide a defense against fish predators.


Journal of Experimental Marine Biology and Ecology | 1995

A new antifouling assay method: results from field experiments using extracts of four marine organisms

Alicia A. Henrikson; Joseph R. Pawlik

Antifouling is one possible defensive function of marine natural products isolated from sessile benthic organisms, but there is little experimental evidence to support this claim. We developed a technique in which crude organic extracts of marine organisms are incorporated into hard, stable gels that serve as substrata for larval settlement in the field. These gels contain extracts at concentrations that are volumetrically equivalent to those in living tissues, and compounds diffuse from assay gels in a manner that may mimic their natural release from some organisms. After 21 days in flowing seawater, a mean of 56% of the mass of crude extract from the sponge Hymeniacidon heliophila (Parker) remained in gels. Extracts from two sponges, Aplysilla longispina (George & Wilson) and Hymeniacidon heliophila, an ascidian, Eudistoma hepaticum (VanName), and an alga, Codium decorticatum (Woodward & Howe), were incorporated into gels and deployed in the field over a period of 28 days; extracts from A. longispina deterred settlement of invertebrates and algae relative to control gels, while extracts from C. decorticatum enhanced settlement. Mean settlement on control gels was similar to that on plexiglas plates of the same size. This technique represents a more ecologically relevant method for assaying the antifouling properties of extracts of marine organisms because (1) assay gels are exposed to a natural population of settling propagules, (2) extracts are incorporated into gels at natural volumetric concentrations, and (3) extracts within the gel matrix do not alter the physical characteristics of the settlement surface.


Journal of Experimental Marine Biology and Ecology | 1987

Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey

Joseph R. Pawlik; Mark T. Burch; William Fenical

Abstract Ship-board assays employing the common Caribbean wrasse Thalassoma bifasdatum (Bloch) were undertaken to determine the palatability of food pellets coated with freshly-extracted, lipid-soluble metabolites of 37 types of Caribbean gorgonian corals representing at least 19 species from 11 genera. Extracts of 19 types (51%) were highly unpalatable (zero or one of five pellets eaten), four types (11%) were moderately unpalatable (two or three of five pellets eaten) and 14 (38%) were palatable (four or five of five pellets eaten) to fish in feeding assays. Gorgonians of the genera Pterogorgia (three types) and Eunicea (nine types) were consistently highly unpalatable, those of the genus Plexaurella (four types) were palatable and those of the genus Plexaura were most frequently palatable (six of eight types). Further assays of serial dilutions of extracts from seven representative, unpalatable types revealed that extracts inhibited fish feeding at pellet concentrations near or below the concentrations that metabolites occur in the gorgonian soft tissue. Extracts of Erythropodium caribaeorum (Duchassaing and Michelotti) and Pseudopterogorgia rigida (Bielschowsky) deterred fish feeding at pellet concentrations less than an order of magnitude lower than those found in the soft tissues of the corresponding gorgonians. Thin layer chromatographic analyses of extracts revealed the presence of lipid-soluble, secondary metabolites in a majority of the highly unpalatable extracts, although secondary metabolites were also present in a smaller percentage of palatable extracts. These data support the hypothesis that the soft tissues of many gorgonian corals contain lipid-soluble feeding deterrents which act as a defense against predation.

Collaboration


Dive into the Joseph R. Pawlik's collaboration.

Top Co-Authors

Avatar

Steven E. McMurray

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy P. Henkel

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Tse-Lynn Loh

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Pei-Yuan Qian

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Susanna López-Legentil

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Finelli

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Erwin

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Matthias Köck

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Xiancui Li

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge