Patrick M. Erwin
University of North Carolina at Wilmington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick M. Erwin.
Nature Communications | 2016
Torsten Thomas; Lucas Moitinho-Silva; Miguel Lurgi; Johannes R. Björk; Cole Easson; Carmen Astudillo-García; Julie B. Olson; Patrick M. Erwin; Susanna López-Legentil; Heidi M. Luter; Andia Chaves-Fonnegra; Rodrigo Costa; Peter J. Schupp; Laura Steindler; Dirk Erpenbeck; Jack A. Gilbert; Rob Knight; Gail Ackermann; Jose V. Lopez; Michael W. Taylor; Robert W. Thacker; José M. Montoya; Ute Hentschel; Nicole S. Webster
Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the worlds oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.
Journal of the Marine Biological Association of the United Kingdom | 2007
Patrick M. Erwin; Robert W. Thacker
Marine sponges are abundant and diverse components of coral reefs and commonly harbour photosynthetic symbionts in these environments. The most prevalent symbiont is the cyanobacterium, Synechococcus spongiarum, isolated from taxonomically diverse hosts from geographically distant regions. We combined analyses of chlorophyll-a (chl-a) concentrations with line-intercept transect surveys to assess the abundance and diversity of reef sponges hosting photosymbionts on Caribbean coral reefs in the Bocas del Toro Archipelago, Panama. To identify symbionts, we designed PCR primers that specifically amplify a fragment of the 16S ribosomal RNA gene from S. spongiarum and used these primers to screen potential host sponges for the presence of this symbiont. Chlorophyll-a data divided the sponge community into two disparate groups, species with high (>125 µg/g, N=20) and low (<50 µg/g, N=38) chl-a concentrations. Only two species exhibited intermediate (50– 125 µg/g) chl-a concentrations; these species represented hosts with reduced symbiont populations, including bleached Xestospongia muta and the mangrove form of Chondrilla nucula (C. nucula f. hermatypica). Sponges with high and intermediate chl-a concentrations accounted for over one-third of the species diversity and abundance of sponges in these communities. Most (85%) of these sponges harboured S. spongiarum. Molecular phylogenies reveal that S. spongiarum represents a sponge-specific Synechococcus lineage, distinct from free-living cyanobacteria. The prevalence of sponge–photosymbiont associations and dominance of symbiont communities by S. spongiarum suggest a major role of this cyanobacterium in sponge ecology and primary productivity on coral reefs.
Molecular Ecology | 2008
Patrick M. Erwin; Robert W. Thacker
Cyanobacteria are common members of sponge‐associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum, molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.
PLOS ONE | 2011
Patrick M. Erwin; Julie B. Olson; Robert W. Thacker
Background Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. Methodology/Principal Findings We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). Conclusions/Significance The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.
Microbial Ecology | 2010
Susanna López-Legentil; Patrick M. Erwin; Joseph R. Pawlik; Bongkeun Song
Sponge-mediated nitrification is an important process in the nitrogen cycle, however, nothing is known about how nitrification and symbiotic Archaea may be affected by sponge disease and bleaching events. The giant barrel sponge Xestospongia muta is a prominent species on Caribbean reefs that contains cyanobacterial symbionts, the loss of which results in two types of bleaching: cyclic, a recoverable condition; and fatal, a condition associated with the disease-like sponge orange band (SOB) syndrome and sponge death. Terminal restriction fragment length polymorphism (TRFLP) analyses, clone libraries, and relative mRNA quantification of ammonia monooxygenase genes (amoA) were performed using a RNA transcript-based approach to characterize the active ammonia-oxidizing Archaea (AOA) community present in bleached, non-bleached, and SOB tissues of cyclically and fatally bleached sponges. We found that non-bleached and cyclically bleached tissues of X. muta harbored a unique Crenarchaeota community closely related to those reported for other sponges. In contrast, bleached tissue from the most degraded sponge contained a Crenarchaeota community that was more similar to those found in sediment and sand. Although there were no significant differences in amoA expression among the different tissues, amoA expression was higher in the most deteriorated tissues. Results suggest that a shift in the Crenarchaeota community precedes an increase in amoA gene expression in fatally bleached sponges, while cyclic bleaching did not alter the AOA community structure and its amoA gene expression.
FEMS Microbiology Ecology | 2013
Lucía Pita; Xavier Turon; Susanna López-Legentil; Patrick M. Erwin
Dispersal limitation and environmental selection are the main processes shaping free-living microbial communities, but host-related factors may also play a major role in structuring symbiotic communities. Here, we aimed to determine the effects of isolation-by-distance and host species on the spatial structure of sponge-associated bacterial communities using as a model the abundant demosponge genus Ircinia. We targeted three co-occurring Ircinia species and used terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences to explore the differentiation of their bacterial communities across a scale of hundreds of kilometres in the Western Mediterranean Sea. Multivariate analysis and nonmetric multidimensional scaling plots of T-RFLP profiles showed that bacterial communities in Ircinia sponges were structured by host species and remained stable across sampling locations, despite geographic distances (80-800 km) and diverse local conditions. While significant differences among some locations were observed in Ircinia variabilis-derived communities, no correlation between geographic distance and community similarity was consistently detected for symbiotic bacteria in any host sponge species. Our results indicate that bacterial communities are mostly shaped by host species-specific factors and suggest that evolutionary processes acting on long-term symbiotic relationships have favored spatial stability of sponge-associated bacterial communities.
The ISME Journal | 2014
Patrick M. Erwin; Mari Carmen Pineda; Nicole S. Webster; Xavier Turon; Susanna López-Legentil
Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200–700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.
PLOS ONE | 2013
Lucía Pita; Patrick M. Erwin; Xavier Turon; Susanna López-Legentil
Sporadic mass mortality events of Mediterranean sponges following periods of anomalously high temperatures or longer than usual stratification of the seawater column (i.e. low food availability) suggest that these animals are sensitive to environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros harbor distinct, species-specific bacterial communities that are highly stable over time and space but little is known about how anomalous environmental conditions affect the structure of the resident bacterial communities. Here, we monitored the bacterial communities in I. fasciculata (largely affected by mass mortalities) and I. oros (overall unaffected) maintained in aquaria during 3 weeks under 4 treatments that mimicked realistic stress pressures: control conditions (13°C, unfiltered seawater), low food availability (13°C, 0.1 µm-filtered seawater), elevated temperatures (25°C, unfiltered seawater), and a combination of the 2 stressors (25°C, 0.1 µm-filtered seawater). Bacterial community structure was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission electron microscopy (TEM). As I. fasciculata harbors cyanobacteria, we also measured chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no significant differences in bacterial T-RFLP profiles among treatments for either host sponge species, indicating no effect of high temperatures and food shortage on symbiont community structure. In I. fasciculata, chl a content did not significantly differ among treatments although TEM micrographs revealed some cyanobacteria cells undergoing degradation when exposed to both elevated temperature and food shortage conditions. Arguably, longer-term treatments (months) could have eventually affected bacterial community structure. However, we evidenced no appreciable decay of the symbiotic community in response to medium-term (3 weeks) environmental anomalies purported to cause the recurrent sponge mortality episodes. Thus, changes in symbiont structure are not likely the proximate cause for these reported mortality events.
Applied and Environmental Microbiology | 2016
Brooke L. Weigel; Patrick M. Erwin
ABSTRACT Sponges host diverse and complex communities of microbial symbionts that display a high degree of host specificity. The microbiomes of conspecific sponges are relatively constant, even across distant locations, yet few studies have directly examined the influence of abiotic factors on intraspecific variation in sponge microbial community structure. The contrast between intertidal and subtidal environments is an ideal system to assess the effect of environmental variation on sponge-microbe symbioses, producing two drastically different environments on a small spatial scale. Here, we characterized the microbial communities of individual intertidal and subtidal Hymeniacidon heliophila sponges, ambient seawater, and sediment from a North Carolina oyster reef habitat by partial (Illumina sequencing) and nearly full-length (clone libraries) 16S rRNA gene sequence analyses. Clone library sequences were compared to H. heliophila symbiont communities from the Gulf of Mexico and Brazil, revealing strong host specificity of dominant symbiont taxa across expansive geographic distances. Sediment and seawater samples yielded clearly distinct microbial communities from those found in H. heliophila. Despite the close proximity of the sponges sampled, significant differences between subtidal and intertidal sponges in the diversity, structure, and composition of their microbial communities were detected. Differences were driven by changes in the relative abundance of a few dominant microbial symbiont taxa, as well as the presence or absence of numerous rare microbial taxa. These findings suggest that extreme abiotic fluctuations, such as periodic air exposure in intertidal habitats, can drive intraspecific differences in complex host-microbe symbioses.
FEMS Microbiology Ecology | 2015
Patrick M. Erwin; Rafel Coma; Paula López-Sendino; Eduard Serrano; Marta Ribes
Marine sponges host bacterial communities with important ecological and economic roles in nature and society, yet these benefits depend largely on the stability of host-symbiont interactions and their susceptibility to changing environmental conditions. Here, we investigated the temporal stability of complex host-microbe symbioses in a temperate, seasonal environment over three years, targeting sponges across a range of symbiont density (high and low microbial abundance, HMA and LMA) and host taxonomy (six orders). Symbiont profiling by terminal restriction fragment length polymorphism analysis of 16S rRNA gene sequences revealed that bacterial communities in all sponges exhibited a high degree of host specificity, low seasonal dynamics and low interannual variability: results that represent an emerging trend in the field of sponge microbiology and contrast sharply with the seasonal dynamics of free-living bacterioplankton. Further, HMA sponges hosted more diverse, even and similar symbiont communities than LMA sponges and these differences in community structure extended to core members of the microbiome. Together, these findings show clear distinctions in symbiont structure between HMA and LMA sponges while resolving notable similarities in their stability over seasonal and inter-annual scales, thus providing insight into the ecological consequences of the HMA-LMA dichotomy and the temporal stability of complex host-microbe symbioses.