Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanna López-Legentil is active.

Publication


Featured researches published by Susanna López-Legentil.


Nature Communications | 2016

Diversity, structure and convergent evolution of the global sponge microbiome

Torsten Thomas; Lucas Moitinho-Silva; Miguel Lurgi; Johannes R. Björk; Cole Easson; Carmen Astudillo-García; Julie B. Olson; Patrick M. Erwin; Susanna López-Legentil; Heidi M. Luter; Andia Chaves-Fonnegra; Rodrigo Costa; Peter J. Schupp; Laura Steindler; Dirk Erpenbeck; Jack A. Gilbert; Rob Knight; Gail Ackermann; Jose V. Lopez; Michael W. Taylor; Robert W. Thacker; José M. Montoya; Ute Hentschel; Nicole S. Webster

Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the worlds oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.


Applied and Environmental Microbiology | 2012

Stability of Sponge-Associated Bacteria over Large Seasonal Shifts in Temperature and Irradiance

Patrick M. Erwin; Lucía Pita; Susanna López-Legentil; Xavier Turon

ABSTRACT Complex microbiomes reside in marine sponges and consist of diverse microbial taxa, including functional guilds that may contribute to host metabolism and coastal marine nutrient cycles. Our understanding of these symbiotic systems is based primarily on static accounts of sponge microbiota, while their temporal dynamics across seasonal cycles remain largely unknown. Here, we investigated temporal variation in bacterial symbionts of three sympatric sponges (Ircinia spp.) over 1.5 years in the northwestern (NW) Mediterranean Sea, using replicated terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of bacterial 16S rRNA gene sequences. Bacterial symbionts in Ircinia spp. exhibited host species-specific structure and remarkable stability throughout the monitoring period, despite large fluctuations in temperature and irradiance. In contrast, seawater bacteria exhibited clear seasonal shifts in community structure, indicating that different ecological constraints act on free-living and on symbiotic marine bacteria. Symbiont profiles were dominated by persistent, sponge-specific bacterial taxa, notably affiliated with phylogenetic lineages capable of photosynthesis, nitrite oxidation, and sulfate reduction. Variability in the sponge microbiota was restricted to rare symbionts and occurred most prominently in warmer seasons, coincident with elevated thermal regimes. Seasonal stability of the sponge microbiota supports the hypothesis of host-specific, stable associations between bacteria and sponges. Further, the core symbiont profiles revealed in this study provide an empirical baseline for diagnosing abnormal shifts in symbiont communities. Considering that these sponges have suffered recent, episodic mass mortalities related to thermal stresses, this study contributes to the development of model sponge-microbe symbioses for assessing the link between symbiont fluctuations and host health.


Molecular Ecology | 2008

Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta

Susanna López-Legentil; Bongkeun Song; Steven E. McMurray; Joseph R. Pawlik

Sponges are a prominent component of coral reef ecosystems. Like reef‐building corals, some sponges have been reported to bleach and die. The giant barrel sponge Xestospongia muta is one of the largest and most important components of Caribbean coral reef communities. Tissues of X. muta contain cyanobacterial symbionts of the Synechococcus group. Two types of bleaching have been described: cyclic bleaching, from which sponges recover, and fatal bleaching, which usually results in sponge death. We quantified hsp70 gene expression as an indicator of stress in X. muta undergoing cyclic and fatal bleaching and in response to thermal and salinity variability in both field and laboratory settings. Chlorophyll a content of sponge tissue was estimated to determine whether hsp70 expression was related to cyanobacterial abundance. We found that fatally bleached sponge tissue presented significantly higher hsp70 gene expression, but cyclically bleached tissue did not, yet both cyclic and fatally bleached tissues had lower chlorophyll a concentrations than nonbleached tissue. These results corroborate field observations suggesting that cyclic bleaching is a temporary, nonstressful state, while fatal bleaching causes significant levels of stress, leading to mortality. Our results support the hypothesis that Synechococcus symbionts are commensals that provide no clear advantage to their sponge host. In laboratory experiments, sponge pieces incubated at 30 °C exhibited significantly higher hsp70 expression than control pieces after 1.5 h, with sponge mortality after less than 15 h. In contrast, sponges at different salinities were not significantly stressed after the same period of time. Stress associated with increasing seawater temperatures may result in declining sponge populations in coral reef ecosystems.


Microbial Ecology | 2010

Effects of Sponge Bleaching on Ammonia-Oxidizing Archaea: Distribution and Relative Expression of Ammonia Monooxygenase Genes Associated with the Barrel Sponge Xestospongia muta

Susanna López-Legentil; Patrick M. Erwin; Joseph R. Pawlik; Bongkeun Song

Sponge-mediated nitrification is an important process in the nitrogen cycle, however, nothing is known about how nitrification and symbiotic Archaea may be affected by sponge disease and bleaching events. The giant barrel sponge Xestospongia muta is a prominent species on Caribbean reefs that contains cyanobacterial symbionts, the loss of which results in two types of bleaching: cyclic, a recoverable condition; and fatal, a condition associated with the disease-like sponge orange band (SOB) syndrome and sponge death. Terminal restriction fragment length polymorphism (TRFLP) analyses, clone libraries, and relative mRNA quantification of ammonia monooxygenase genes (amoA) were performed using a RNA transcript-based approach to characterize the active ammonia-oxidizing Archaea (AOA) community present in bleached, non-bleached, and SOB tissues of cyclically and fatally bleached sponges. We found that non-bleached and cyclically bleached tissues of X. muta harbored a unique Crenarchaeota community closely related to those reported for other sponges. In contrast, bleached tissue from the most degraded sponge contained a Crenarchaeota community that was more similar to those found in sediment and sand. Although there were no significant differences in amoA expression among the different tissues, amoA expression was higher in the most deteriorated tissues. Results suggest that a shift in the Crenarchaeota community precedes an increase in amoA gene expression in fatally bleached sponges, while cyclic bleaching did not alter the AOA community structure and its amoA gene expression.


PLOS ONE | 2011

The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

Mari Carmen Pineda; Susanna López-Legentil; Xavier Turon

Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ships hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species.


Zoologica Scripta | 2005

How do morphotypes and chemotypes relate to genotypes? The colonial ascidian Cystodytes (Polycitoridae)

Susanna López-Legentil; Xavier Turon

Intraspecies variability is widespread in marine invertebrates. Size, colour, texture, general shape and secondary chemistry can differ quite drastically from one individual to another. Cystodytes dellechiajei (Polycitoridae) is a cosmopolitan colonial ascidian with several morphotypes, most of which differ in colour and spicular composition. New molecular tools enable us to assess the taxonomic status of these morphotypes. To determine whether variation observed in Mediterranean Cystodytes has a genetic basis, we sequenced 45 specimens from eight locations of the western Mediterranean and one from Mayotte (Indian Ocean), and obtained a 617 bp fragment of the mitochondrial gene COI. Fifteen different colour morphs were recorded and four kinds of spicules were found: disk‐shaped, sphere‐shaped, star‐shaped and discoidal, thick spicules with a toothed margin. Zooid morphology was remarkably uniform in the whole sample set. Different tree construction methods (distance‐based, parsimony‐based, and maximum‐likelihood‐based) yielded consistent results, and recognized six major clades, which had no correspondence with spicule shape and were only partially consistent with colour morphs. Results are discussed in the light of previous knowledge of the chemistry of blue, green, brown and purple colour morphs. In spite of the different colour patterns and spicular variability we concluded, on the basis of chemical and genetic data, that the morphological traits analysed were not consistent enough to be used to differentiate between Cystodytes species. We point out the importance of genetics and chemistry in assessing the taxonomic status of species with variable morphology.


PLOS ONE | 2011

Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts

Susanna López-Legentil; Bongkeun Song; Manel Bosch; Joseph R. Pawlik; Xavier Turon

Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S–23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.


FEMS Microbiology Ecology | 2013

Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea

Lucía Pita; Xavier Turon; Susanna López-Legentil; Patrick M. Erwin

Dispersal limitation and environmental selection are the main processes shaping free-living microbial communities, but host-related factors may also play a major role in structuring symbiotic communities. Here, we aimed to determine the effects of isolation-by-distance and host species on the spatial structure of sponge-associated bacterial communities using as a model the abundant demosponge genus Ircinia. We targeted three co-occurring Ircinia species and used terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences to explore the differentiation of their bacterial communities across a scale of hundreds of kilometres in the Western Mediterranean Sea. Multivariate analysis and nonmetric multidimensional scaling plots of T-RFLP profiles showed that bacterial communities in Ircinia sponges were structured by host species and remained stable across sampling locations, despite geographic distances (80-800 km) and diverse local conditions. While significant differences among some locations were observed in Ircinia variabilis-derived communities, no correlation between geographic distance and community similarity was consistently detected for symbiotic bacteria in any host sponge species. Our results indicate that bacterial communities are mostly shaped by host species-specific factors and suggest that evolutionary processes acting on long-term symbiotic relationships have favored spatial stability of sponge-associated bacterial communities.


The ISME Journal | 2014

Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians

Patrick M. Erwin; Mari Carmen Pineda; Nicole S. Webster; Xavier Turon; Susanna López-Legentil

Ascidians are ecologically important components of marine ecosystems yet the ascidian microbiota remains largely unexplored beyond a few model species. We used 16S rRNA gene tag pyrosequencing to provide a comprehensive characterization of microbial symbionts in the tunic of 42 Great Barrier Reef ascidian samples representing 25 species. Results revealed high bacterial biodiversity (3 217 unique operational taxonomic units (OTU0.03) from 19 described and 14 candidate phyla) and the widespread occurrence of ammonia-oxidizing Thaumarchaeota in coral reef ascidians (24 of 25 host species). The ascidian microbiota was clearly differentiated from seawater microbial communities and included symbiont lineages shared with other invertebrate hosts as well as unique, ascidian-specific phylotypes. Several rare seawater microbes were markedly enriched (200–700 fold) in the ascidian tunic, suggesting that the rare biosphere of seawater may act as a conduit for horizontal symbiont transfer. However, most OTUs (71%) were rare and specific to single hosts and a significant correlation between host relatedness and symbiont community similarity was detected, indicating a high degree of host-specificity and potential role of vertical transmission in structuring these communities. We hypothesize that the complex ascidian microbiota revealed herein is maintained by the dynamic microenvironments within the ascidian tunic, offering optimal conditions for different metabolic pathways such as ample chemical substrate (ammonia-rich host waste) and physical habitat (high oxygen, low irradiance) for nitrification. Thus, ascidian hosts provide unique and fertile niches for diverse microorganisms and may represent an important and previously unrecognized habitat for nitrite/nitrate regeneration in coral reef ecosystems.


Microbial Ecology | 2012

Ultrastructure, Molecular Phylogenetics, and Chlorophyll a Content of Novel Cyanobacterial Symbionts in Temperate Sponges

Patrick M. Erwin; Susanna López-Legentil; Xavier Turon

Marine sponges often harbor photosynthetic symbionts that may enhance host metabolism and ecological success, yet little is known about the factors that structure the diversity, specificity, and nature of these relationships. Here, we characterized the cyanobacterial symbionts in two congeneric and sympatric host sponges that exhibit distinct habitat preferences correlated with irradiance: Ircinia fasciculata (higher irradiance) and Ircinia variabilis (lower irradiance). Symbiont composition was similar among hosts and dominated by the sponge-specific cyanobacterium Synechococcus spongiarum. Phylogenetic analyses of 16S–23S rRNA internal transcribed spacer (ITS) gene sequences revealed that Mediterranean Ircinia spp. host a specific, novel symbiont clade (“M”) within the S. spongiarum species complex. A second, rare cyanobacterium related to the ascidian symbiont Synechocystis trididemni was observed in low abundance in I. fasciculata and likewise corresponded to a new symbiont clade. Symbiont communities in I. fasciculata exhibited nearly twice the chlorophyll a concentrations of I. variabilis. Further, S. spongiarum clade M symbionts in I. fasciculata exhibited dense intracellular aggregations of glycogen granules, a storage product of photosynthetic carbon assimilation rarely observed in I. variabilis symbionts. In both host sponges, S. spongiarum cells were observed interacting with host archeocytes, although the lower photosynthetic activity of Cyanobacteria in I. variabilis suggests less symbiont-derived nutritional benefit. The observed differences in clade M symbionts among sponge hosts suggest that ambient irradiance conditions dictate symbiont photosynthetic activity and consequently may mediate the nature of host–symbiont relationships. In addition, the plasticity exhibited by clade M symbionts may be an adaptive attribute that allows for flexibility in host–symbiont interactions across the seasonal fluctuations in light and temperature characteristic of temperate environments.

Collaboration


Dive into the Susanna López-Legentil's collaboration.

Top Co-Authors

Avatar

Xavier Turon

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Erwin

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Pawlik

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Lucía Pita

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Bongkeun Song

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Rocío Pérez-Portela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Riesgo

Natural History Museum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gema Blasco

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge