Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josephine H. Cox is active.

Publication


Featured researches published by Josephine H. Cox.


Journal of Immunological Methods | 2002

A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays.

Jeffrey R. Currier; Ellen Kuta; Ellen Turk; Lyndsay B Earhart; Larry Loomis-Price; Sylvia Janetzki; Guido Ferrari; Deborah L. Birx; Josephine H. Cox

Vaccines in general and HIV vaccines in particular are focusing ever more on the induction of cellular immunity specifically the generation of cytotoxic T cells (CTL). As progress is made towards developing a safe and effective HIV vaccine, there is a need for a robust, sensitive and reproducible assay to evaluate vaccine-induced cellular immunogenicity in Phase II/III trials. The enzyme-linked immunospot (ELISPOT) assay fits these criteria and is a technology that is readily transferable and amenable to high-through-put screening. There is a need for reagents that can be used as positive controls and for optimizing and standardizing the assay. We selected a panel of 23 8-11 mer Influenza virus (Flu), Cytomegalovirus (CMV) and Epstein Barr virus (EBV) epitopes recognized by CD8 positive T cells and presented by 11 class I HLA-A and HLA-B alleles whose cumulative frequencies represent >100% of Caucasian individuals. We examined interferon-gamma (IFN-gamma) secretion in peripheral blood mononuclear cells (PBMC) incubated with the peptides using a modified ELISPOT assay. IFN-gamma secretion was detected in 15/17 (88%) HIV-1 seronegative and 14/20 (70%) HIV-1 seropositive individuals. Release of IFN-gamma in response to the pool of peptides was CD8+ T cell mediated and HLA restricted. In vitro stimulation of PBMC with individual peptides or the pool of peptides led to the expansion of T cells capable of killing target cells expressing the appropriate viral antigen in a CTL assay. The size, shape and appearance of the spots produced using this peptide panel provided a standard for the establishment of acceptance criteria of spots for the evaluation of ELISPOT plates using an automated reader system.


BMC Immunology | 2005

Standardization of cytokine flow cytometry assays

Holden T. Maecker; Aline Rinfret; Patricia D'Souza; Janice Darden; Eva Roig; Claire Landry; Peter Hayes; Josephine Birungi; Omu Anzala; Miguel Garcia; Alexandre Harari; Ian Frank; Ruth Baydo; Megan Baker; Jennifer Holbrook; Janet Ottinger; Laurie Lamoreaux; C. Lorrie Epling; Elizabeth Sinclair; Maria A. Suni; Kara Punt; Sandra A. Calarota; Sophia El-Bahi; Gailet Alter; Hazel Maila; Ellen Kuta; Josephine H. Cox; Clive M. Gray; Marcus Altfeld; Nolwenn Nougarede

BackgroundCytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online).ResultsThree sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4+cytokine+ cells and CD8+cytokine+ cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template.Mean inter-laboratory coefficient of variation (C.V.) ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24%) for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82%) for samples with a mean of <0.1% IFNγ + cells.ConclusionICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays.


The Journal of Infectious Diseases | 2008

Broad Immunogenicity of a Multigene, Multiclade HIV-1 DNA Vaccine Boosted with Heterologous HIV-1 Recombinant Modified Vaccinia Virus Ankara

Eric Sandström; Charlotta Nilsson; Bo Hejdeman; Andreas Bråve; Göran Bratt; Merlin L. Robb; Josephine H. Cox; Thomas C. VanCott; Mary Marovich; Richard Stout; Said Aboud; Muhammad Bakari; Kisali Pallangyo; Karl Ljungberg; Bernard Moss; Patricia L. Earl; Nelson L. Michael; Deborah C. Birx; Fred Mhalu; Britta Wahren; Gunnel Biberfeld; Hiv Immunogenicity Study

BACKGROUND A human immunodeficiency virus (HIV) vaccine that limits disease and transmission is urgently needed. This clinical trial evaluated the safety and immunogenicity of an HIV vaccine that combines a plasmid-DNA priming vaccine and a modified vaccinia virus Ankara (MVA) boosting vaccine. METHODS Forty healthy volunteers were injected with DNA plasmids containing gp160 of HIV-1 subtypes A, B, and C; rev B; p17/p24 gag A and B, and RTmut B by use of a needle-free injection system. The vaccine was administered intradermally or intramuscularly, with or without recombinant granulocyte macrophage colony-stimulating factor, and boosted with a heterologous MVA containing env, gag, and pol of CRF01A_E. Immune responses were monitored with HIV-specific interferon (IFN)-gamma and interleukin (IL)-2 ELISpot and lymphoproliferative assays (LPAs). RESULTS Vaccine-related adverse events were mild and tolerable. After receipt of the DNA priming vaccine, 11 (30%) of 37 vaccinees had HIV-specific IFN-gamma responses. After receipt of the MVA boosting vaccine, ELISpot assays showed that 34 (92%) of 37 vaccinees had HIV-specific IFN-gamma responses, 32 (86%) to Gag and 24 (65%) to Env. IFN-gamma production was detected in both the CD8(+) T cell compartment (5 of 9 selected vaccinees) and the CD4(+) T cell compartment (9 of 9). ELISpot results showed that 25 (68%) of 37 vaccinees had a positive IL-2 response and 35 (92%) of 38 had a positive LPA response. Of 38 subjects, a total of 37 (97%) were responders. One milligram of HIV-1 DNA administered intradermally was as effective as 4 mg administered intramuscularly in priming for the MVA boosting vaccine. CONCLUSION This HIV-DNA priming-MVA boosting approach is safe and highly immunogenic. TRIALS REGISTRATION International Standard Randomised Controlled Trial number: ISRCTN32604572 .


Journal of Virology | 2007

CD8 T-Cell Recognition of Multiple Epitopes within Specific Gag Regions Is Associated with Maintenance of a Low Steady-State Viremia in Human Immunodeficiency Virus Type 1-Seropositive Patients

Christof Geldmacher; Jeffrey R. Currier; Eva Herrmann; Antelmo Haule; Ellen Kuta; Francine E. McCutchan; Lilian Njovu; Steffen Geis; Oliver Hoffmann; Leonard Maboko; Carolyn Williamson; Deborah L. Birx; Andreas Meyerhans; Josephine H. Cox; Michael Hoelscher

ABSTRACT The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = −0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.


PLOS ONE | 2011

In Vivo Electroporation Enhances the Immunogenicity of an HIV-1 DNA Vaccine Candidate in Healthy Volunteers

Sandhya Vasan; Arlene Hurley; Sarah J. Schlesinger; Drew Hannaman; David F. Gardiner; Daniel Dugin; Mar Boente-Carrera; Roselle Vittorino; Marina Caskey; Johanne Andersen; Yaoxing Huang; Josephine H. Cox; Tony Tarragona-Fiol; Dilbinder K. Gill; Hannah Cheeseman; Lorna Clark; Len Dally; Carol Smith; Claudia Schmidt; Harriet Park; Jakub Kopycinski; Jill Gilmour; Patricia Fast; Robert M. Bernard; David D. Ho

Background DNA-based vaccines have been safe but weakly immunogenic in humans to date. Methods and Findings We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines. Conclusions This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate. Trial Registration ClinicalTrials.gov NCT00545987


Molecular Therapy | 2014

Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1

Nicola J. Borthwick; Tina Ahmed; Beatrice Ondondo; Peter Hayes; Annie Rose; Umar Ebrahimsa; Emma Jo Hayton; Antony P. Black; Anne Bridgeman; Maximillian Rosario; Adrian V. S. Hill; Eleanor Berrie; Sarah Moyle; Nicole Frahm; Josephine H. Cox; Stefano Colloca; Alfredo Nicosia; Jill Gilmour; Andrew J. McMichael; Lucy Dorrell; Tomáš Hanke

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


The Journal of Infectious Diseases | 2010

A Phase 1/2 Study of a Multiclade HIV-1 DNA Plasmid Prime and Recombinant Adenovirus Serotype 5 Boost Vaccine in HIV-Uninfected East Africans (RV 172)

Hannah Kibuuka; Robert Kimutai; Leonard Maboko; Fred Sawe; Mirjam Schunk; Arne Kroidl; Douglas Shaffer; Leigh Anne Eller; Rukia Kibaya; Michael A. Eller; Karin B. Schindler; Alexandra Schuetz; Monica Millard; Jason Kroll; Len Dally; Michael Hoelscher; Robert T. Bailer; Josephine H. Cox; Mary Marovich; Deborah L. Birx; Barney S. Graham; Nelson L. Michael; Mark S. de Souza; Merlin L. Robb

BACKGROUND Human immunodeficiency virus (HIV) vaccine development remains a global priority. We describe the safety and immunogenicity of a multiclade DNA vaccine prime with a replication-defective recombinant adenovirus serotype 5 (rAd5) boost. METHODS The vaccine is a 6-plasmid mixture encoding HIV envelope (env) subtypes A, B, and C and subtype B gag, pol, and nef, and an rAd5 expressing identical genes, with the exception of nef. Three hundred and twenty-four participants were randomized to receive placebo (n=138), a single dose of rAd5 at 10(10) (n = 24) or 10(11) particle units (n = 24), or DNA at 0, 1, and 2 months, followed by rAd5 at either 10(10) (n= 114) or 10(11) particle units (n = 24) boosting at 6 months. Participants were followed up for 24 weeks after the final vaccination. RESULTS The vaccine was safe and well tolerated. HIV-specific T cell responses were detected in 63% of vaccinees. Titers of preexisting Ad5 neutralizing antibody did not affect the frequency and magnitude of T cell responses in prime-boost recipients but did affect the response rates in participants that received rAd5 alone (P = .037). CONCLUSION The DNA/rAd5 vaccination regimen was safe and induced HIV type 1 multi-clade T cell responses, which were not significantly affected by titers of preexisting rAd5 neutralizing antibody. Trial Registration. ClinicalTrials.gov identifier: NCT00123968 .


PLOS ONE | 2010

Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

Walter Jaoko; Etienne Karita; Kayitesi Kayitenkore; Gloria Omosa-Manyonyi; Susan Allen; Soe Than; Elizabeth Adams; Barney S. Graham; Richard A. Koup; Robert T. Bailer; Carol Smith; Len Dally; Bashir Farah; Omu Anzala; Claude M. Muvunyi; Jean Bizimana; Tony Tarragona-Fiol; Philip Bergin; Peter Hayes; Martin Ho; Kelley Loughran; Wendy Komaroff; Gwynneth Stevens; Helen Thomson; Mark Boaz; Josephine H. Cox; Claudia Schmidt; Jill Gilmour; Gary J. Nabel; Patricia Fast

Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial Registration ClinicalTrials.gov NCT00124007


PLOS ONE | 2010

Phase I Safety and Immunogenicity Evaluation of MVA-CMDR, a Multigenic, Recombinant Modified Vaccinia Ankara-HIV-1 Vaccine Candidate

Jeffrey R. Currier; Viseth Ngauy; Mark S. de Souza; Silvia Ratto-Kim; Josephine H. Cox; Victoria R. Polonis; Patricia L. Earl; Bernard Moss; Sheila A. Peel; Bonnie M. Slike; Somchai Sriplienchan; Thongcharoen P; Robert Paris; Merlin L. Robb; Jerome H. Kim; Nelson L. Michael; Mary Marovich

Background We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. Methodology/Principal Findings MVA-CMDR or placebo was administered intra-muscularly (IM; 107 or 108 pfu) or intradermally (ID; 106 or 107 pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a 51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/106 PBMC at 108 pfu IM), but high in response rate (70% 51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 108 pfu IM); (ii) predominantly HIV Env-specific CD4+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 108 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 108 pfu IM). Conclusions/Significance MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses. Trial Registration ClinicalTrials.gov NCT00376090


The Journal of Infectious Diseases | 1998

Cross-Clade Cytotoxic T Cell Response to Human Immunodeficiency Virus Type 1 Proteins among HLA Disparate North Americans and Thais

Julia A. Lynch; Mark deSouza; Merlin D. Robb; Lauri E. Markowitz; Sorachai Nitayaphan; Christine V. Sapan; Dean L. Mann; Deborah L. Birx; Josephine H. Cox

A globally effective vaccine will need to elicit cytotoxic T lymphocytes (CTL) capable of recognizing diverse human immunodeficiency virus type 1 (HIV-1) clades. Study of the cellular immune responses of HIV-1-infected persons may allow predictions to be made regarding useful vaccine antigen components. The frequency and magnitude of CTL responses to clade E and B Gag, Pol-RT, Env, and Nef proteins were compared in 12 HLA-characterized, clade E-infected Thais and in 10 clade B-infected North Americans using vaccinia recombinant constructs for protein expression. While responses were detected against all proteins, they were most frequent and cross-reactive to Gag in both groups. Pol-RT was recognized less frequently in Thais than North Americans. Cross-clade protein recognition was common but not uniformly present among these HLA-disparate individuals. Population-specific CTL data are needed to adequately prepare for vaccine trials outside of North America and Europe.

Collaboration


Dive into the Josephine H. Cox's collaboration.

Top Co-Authors

Avatar

Deborah L. Birx

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jill Gilmour

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar

Patricia Fast

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar

Merlin L. Robb

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Peter Hayes

International AIDS Vaccine Initiative

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Currier

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Len Dally

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Nelson L. Michael

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Marovich

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge