Joshua E. Turse
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua E. Turse.
PLOS ONE | 2008
Stephen J. Callister; Lee Ann McCue; Joshua E. Turse; Matthew E. Monroe; Kenneth J. Auberry; Richard D. Smith; Joshua N. Adkins; Mary S. Lipton
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.
Infection and Immunity | 2006
Jianwu Pei; Joshua E. Turse; Qingmin Wu; Thomas A. Ficht
ABSTRACT Previous studies suggest that smooth Brucella organisms inhibit macrophage apoptosis. In contrast, necrotic cell death of macrophages infected with rough Brucella organisms in vitro has been reported, which may in part explain the failure of some rough organisms to thrive. To characterize these potential macrophage killing mechanisms, J774.A1 murine macrophages were infected with Brucella abortus S2308-derived rough mutant CA180. Electron microscopic analysis and polyethylene glycol protection assays revealed that the cells were killed as a result of necrosis and oncosis. This killing was shown to be unaffected by treatment with carbenicillin, an inhibitor of bacterial cell wall biosynthesis and, indirectly, replication. In contrast, chloramphenicol treatment of macrophages infected at multiplicities of infection exceeding 10,000 prevented cell death, despite internalization of large numbers of bacteria. Similarly, heat-killed and gentamicin-killed CA180 did not induce cytopathic effects in the macrophage. These results suggested that killing of infected host cells requires active bacterial protein synthesis. Cytochalasin D treatment revealed that internalization of the bacteria was necessary to initiate killing. Transwell experiments demonstrated that cell death is not mediated by a diffusible product, including tumor necrosis factor alpha and nitric oxide, but does require direct contact between host and pathogen. Furthermore, macrophages preinfected with B. abortus S2308 or pretreated with B. abortus O polysaccharide did not prevent rough CA180-induced cell death. In conclusion, Brucella rough mutant infection induces necrotic and oncotic macrophage cell death that requires bacterial protein synthesis and direct interaction of bacteria with the target cells.
International Journal for Parasitology | 2014
Lwiindi Mudenda; Sebastián Aguilar Pierlé; Joshua E. Turse; Glen A. Scoles; Samuel O. Purvine; Carrie D. Nicora; Therese R. Clauss; Massaro W. Ueti; Wendy C. Brown; Kelly A. Brayton
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.
Vaccine | 2011
L. Garry Adams; Sangeeta Khare; Sara D. Lawhon; Carlos A. Rossetti; Harris A. Lewin; Mary S. Lipton; Joshua E. Turse; Dennis C. Wylie; Yu Bai; Kenneth L. Drake
The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the hosts molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the hosts biosignatures to each infectious condition. Through this DBN computational approach, the method identified significantly perturbed pathways and GO category groups of genes that define the pathogenicity signatures of the infectious agent. Our preliminary results provide deeper understanding of the overall complexity of host innate immune response as well as the identification of host gene perturbations that defines a unique host temporal biosignature response to each pathogen. The application of advanced computational methods for developing interactome models based on DBNs has proven to be instrumental in elucidating novel host responses and improved functional biological insight into the host defensive mechanisms. Evaluating the unique differences in pathway and GO perturbations across pathogen conditions allowed the identification of plausible host-pathogen interaction mechanisms. Accordingly, a systems biology approach to study molecular pathway gene expression profiles of host cellular responses to microbial pathogens holds great promise as a methodology to identify, model and predict the overall dynamics of the host-pathogen interactome. Thus, we propose that such an approach has immediate application to the rational design of brucellosis and salmonellosis vaccines.
Journal of Proteome Research | 2009
Kristene L. Henne; Joshua E. Turse; Carrie D. Nicora; Mary S. Lipton; Sandra L. Tollaksen; Carl Lindberg; Gyorgy Babnigg; Carol S. Giometti; Cindy H. Nakatsu; Dorothea K. Thompson; Allan Konopka
A global proteomic evaluation of the response of Arthrobacter sp. strain FB24 to 5 and 20 mM Cr(VI) was conducted using both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). The changes in protein expression found with 2-DGE indicate alterations in central metabolism and amino acid synthesis. Proteome coverage increased from 22% with 2-DGE to 71% with LC/LC-MS/MS. The proteins exhibiting the highest levels of expression under Cr(VI) stress suggest intracellular sulfur limitation, which could be driven by competition for the sulfate (SO4(2-)) transporter by the chromate (CrO4(2-)) ion. These results are consistent with the growth defects seen with strain FB24 when Cr(VI) concentrations exceeded 5 mM.
Frontiers in Microbiology | 2011
Joshua E. Turse; Jianwu Pei; Thomas A. Ficht
Lipopolysaccharide-deficient mutants of smooth Brucella species (rough mutants) have been shown to arise spontaneously in culture. However, in situ analysis of Brucella infected macrophages using antibody directed against O-polysaccharide suggested a loss of reactivity of Brucella consistent with the appearance of rough organisms, and a potential contribution to infection. The experiments reported describe the direct recovery of Brucella from macrophages infected in vitro and from the spleens of infected mice at a frequency similar to that described in vitro, suggesting that Brucella dissociation is not simply an in vitro artifact. The frequency of appearance of spontaneous rough organisms deficient in O-polysaccharide expression measured in vitro is approximately 2–3 logs higher than the appearance of mutation to antibiotic resistance, purine auxotrophy, or reversion of erythritol sensitive ΔeryC mutants to tolerance. Genetic trans-complementation using a plasmid-based expression of Brucella manBA successfully restored O-polysaccharide expression in only one-third of O-polysaccharide deficient spontaneous mutants. Suggesting that the appearance of rough mutants is caused by mutation at more than one locus. In addition, Sanger sequencing of the manBA structural genes detected multiple sequence changes that may explain the observed phenotypic differences. The presence of O-polysaccharide resulted in macrophage and neutrophil infiltration into the peritoneal cavity and systemic distribution of the organism. In contrast, rough organisms are controlled by resident macrophages or by extracellular killing mechanisms and rapidly cleared from this compartment consistent with the inability to cause disease. Loss of O-polysaccharide expression appears to be stochastic giving rise to organisms with biological properties distinct from the parental smooth organism during the course of infection.
PLOS ONE | 2010
Joshua E. Turse; Matthew J. Marshall; James K. Fredrickson; Mary S. Lipton; Stephen J. Callister
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.
BMC Proceedings | 2011
L. Garry Adams; Sangeeta Khare; Sara D. Lawhon; Carlos A. Rossetti; Harris A. Lewin; Mary S. Lipton; Joshua E. Turse; Dennis C. Wylie; Yu Bai; Kenneth L. Drake
BackgroundTo decipher the complexity and improve the understanding of host-pathogen interactions, biologists must adopt new system level approaches in which the hierarchy of biological interactions and dynamics can be studied. This paper presents the application of systems biology for the cross-comparative analysis and interactome modeling of three different infectious agents, leading to the identification of novel, unique and common molecular host responses (biosignatures).MethodsA computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Salmonella enterica Typhimurium (STM) and Mycobacterium avium paratuberculosis (MAP). A bovine ligated ileal loop biological model was employed to capture the host gene expression response at four time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a systematic comparative analysis of pathway and Gene Ontology category perturbations.ResultsA cross-comparative assessment of 219 pathways and 1620 gene ontology (GO) categories was performed on each pathogen-host condition. Both unique and common pathway and GO perturbations indicated remarkable temporal differences in pathogen-host response profiles. Highly discriminatory pathways were selected from each pathogen condition to create a common system level interactome model comprised of 622 genes. This model was trained with data from each pathogen condition to capture unique and common gene expression features and relationships leading to the identification of candidate host-pathogen points of interactions and discriminatory biosignatures.ConclusionsOur results provide deeper understanding of the overall complexity of host defensive and pathogen invasion processes as well as the identification of novel host-pathogen interactions. The application of advanced computational methods for developing interactome models based on DBN has proven to be instrumental in conducting multi-conditional cross-comparative analyses. Further, this approach generates a fully simulateable model with capabilities for predictive analysis as well as for diagnostic pattern recognition. The resulting biosignatures may represent future targets for identification of emerging pathogens as well as for development of antimicrobial drugs, immunotherapeutics, or vaccines for prevention and treatment of diseases caused by known, emerging/re-emerging infectious agents.
PLOS ONE | 2015
Deirdre R. Ducken; Wendy C. Brown; Debra C. Alperin; Kelly A. Brayton; Kathryn E. Reif; Joshua E. Turse; Guy H. Palmer; Susan M. Noh
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.
Clinical and Vaccine Immunology | 2013
Susan M. Noh; Joshua E. Turse; Wendy C. Brown; Junzo Norimine; Guy H. Palmer
ABSTRACT The prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective, they are difficult and expensive to isolate and standardize and thus are often impractical for development and implementation in vaccination programs. In contrast, individual proteins, which are easily adapted for use in subunit vaccines, tend to be poorly protective. Consequently, identification of the specific characteristics of outer membrane-based immunogens, in terms of the antigen contents and contexts that are required for protective immunity, represents a major gap in the knowledge needed for bacterial vaccine development. Using as a model Anaplasma marginale, a persistent tick-borne bacterial pathogen of cattle, we tested two sets of immunogens to determine whether membrane context affected immunogenicity and the capacity to induce protection. The first immunogen was composed of a complex of outer membrane proteins linked by covalent bonds and known to be protective. The second immunogen was derived directly from the first one, but the proteins were individualized rather than linked. The antibody response induced by the linked immunogen was much greater than that induced by the unlinked immunogen. However, both immunogens induced protective immunity and an anamnestic response. These findings suggest that individual proteins or combinations of proteins can be successfully tested for the ability to induce protective immunity with less regard for overall membrane context. Once protective antigens are identified, immunogenicity could be enhanced by cross-linking to allow a reduced immunogen dose or fewer booster vaccinations.