Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua H. Lipschutz is active.

Publication


Featured researches published by Joshua H. Lipschutz.


Current Biology | 2002

Exocytosis: The many masters of the exocyst

Joshua H. Lipschutz; Keith E. Mostov

The exocyst is a conserved eight-subunit complex involved in the docking of exocytic vesicles. The exocyst has now been identified as an effector for five small GTPases, including Sec4, Rho1, Rho3, Cdc42 and, most recently, RalA.


Molecular Biology of the Cell | 2009

The Exocyst Protein Sec10 Is Necessary for Primary Ciliogenesis and Cystogenesis In Vitro

Xiaofeng Zuo; Wei Guo; Joshua H. Lipschutz

Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, in which they are felt to participate in flow sensing and have been linked to the pathogenesis of cystic renal disorders such as autosomal dominant polycystic kidney disease. We previously localized the exocyst, an eight-protein complex involved in membrane trafficking, to the primary cilium of Madin-Darby canine kidney cells and showed that it was involved in cystogenesis. Here, using short hairpin RNA (shRNA) to knockdown exocyst expression and stable transfection to induce exocyst overexpression, we show that the exocyst protein Sec10 regulates primary ciliogenesis. Using immunofluorescence, scanning, and transmission electron microscopy, primary cilia containing only basal bodies are seen in the Sec10 knockdown cells, and increased ciliogenesis is seen in Sec10-overexpressing cells. These phenotypes do not seem to be because of gross changes in cell polarity, as apical, basolateral, and tight junction proteins remain properly localized. Sec10 knockdown prevents normal cyst morphogenesis when the cells are grown in a collagen matrix, whereas Sec10 overexpression results in increased cystogenesis. Transfection with human Sec10 resistant to the canine shRNA rescues the phenotype, demonstrating specificity. Finally, Par3 was recently shown to regulate primary cilia biogenesis. Par3 and the exocyst colocalized by immunofluorescence and coimmunoprecipitation, consistent with a role for the exocyst in targeting and docking vesicles carrying proteins necessary for primary ciliogenesis.


International Review of Cytology-a Survey of Cell Biology | 1998

HEPATOCYTE GROWTH FACTOR AND THE KIDNEY : IT IS NOT JUST FOR THE LIVER

Daniel F. Balkovetz; Joshua H. Lipschutz

Mesenchymal-epithelial interactions are important for many biological processes in epithelial organs such as the kidney. Hepatocyte growth factor (HGF) is a mesenchymally derived polypeptide cytokine that acts through its tyrosine kinase c-met receptor and is an important mediator of these interactions. This article reviews data showing the in vitro actions of HGF on renal epithelial cells that result in such diverse responses as mitogenesis, motogenesis, and morphogenesis. It also examines the in vivo evidence linking HGF and the c-met receptor to kidney development, regeneration following injury, and renal disease. Elucidating cellular mechanisms underlying the coordinated control of diverse HGF-induced phenotypic changes in renal epithelia in vitro should contribute to a clearer understanding of complex biological processes such as organogenesis, regeneration, and carcinogenesis in epithelial organs such as the kidney.


The Journal of Urology | 1997

The Effect of Testosterone on Androgen Receptors and Human Penile Growth

Laurence S. Baskin; Ronald S. Sutherland; Michael DiSandro; Simon W. Hayward; Joshua H. Lipschutz; Gerald R. Cunha

PURPOSE Recent rat studies suggest that early exposure to exogenous testosterone accelerates the loss of androgen receptors and compromises eventual penile length. In humans we hypothesize that down regulation of the androgen receptor is not the mechanism that stops penile growth. To test this hypothesis we investigated the effects of androgen deprivation and supplementation on the developing human penis. MATERIALS AND METHODS A total of 15 normal human fetal penises at 7 to 19 weeks of gestation (mean plus or minus standard deviation 12 +/- 4.5) was divided in half sagittally. Specimens were grafted beneath the renal capsule of male athymic nude mice or nude rats. Three groups of host animals were prepared, including 10 with no testosterone that were castrated at grafting, 15 with testosterone and 5 with super testosterone in which 50 mg. testosterone propionate pellets were implanted subcutaneously at grafting. Each fetal penile specimen was its own control, since half was implanted into an intact animal and the other into a castrated or super testosterone host. Six weeks after grafting the specimens were analyzed for gross size (length), histology and expression of androgen receptors. RESULTS All human fetal penile specimens grew from the nadir size and appeared as white exophytic growths on the surface of the host kidneys. Normal grafts were larger than castrate specimens (mean 6.9 +/- 2.1 versus 3.9 +/- 2.1 mm., p = 0.014). Mean length of the super testosterone specimens (7.3 +/- 2.3 mm.) was not significantly greater than that of normal specimens (p = 0.797). Histological analysis revealed that all specimens were composed of viable penile tissue. Cellular density of the castrate penises was approximately 2 times greater than that of the normal and super testosterone specimens (40.6 +/- 5.9 versus 25.1 +/- 2.8 cells per cm.2, p > 0.001), as calculated on enlarged micrographs. Supraphysiological doses of testosterone did not change the histology compared to controls. Immunohistochemical localization revealed androgen receptors expressed throughout the corporeal bodies, surrounding stroma and penile skin with intracellular localization to nucleus. The mean proportion of cells expressing androgen receptors was higher in the castrate (29.4 +/- 5.2 cells per cm.2) than in the normal (24.0 +/- 3.7) and super testosterone (24.7 +/- 4.5) grafts (p = 0.005). However, in regard to growth there was no change in the proportion of androgen receptor positive cells among the groups. CONCLUSIONS Testosterone influences penile growth, possibly as a result of extracellular stromal expansion. The number of androgen receptor positive cells in the human fetal penis did not change among the castrate, normal and super testosterone hosts. These experiments support the hypothesis that penile growth cessation is mediated by mechanisms other than down regulation of the androgen receptor. Furthermore, these data support the hypothesis that early administration of androgen to prepubertal male individuals does not result in a shorter phallus in adulthood.


PLOS Genetics | 2011

The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes.

Ben Fogelgren; Shin-Yi Lin; Xiaofeng Zuo; Kimberly M. Jaffe; Kwon Moo Park; Ryan Reichert; P. Darwin Bell; Rebecca D. Burdine; Joshua H. Lipschutz

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown—including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation—suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.


Journal of Biological Chemistry | 2011

The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells

Xiaofeng Zuo; Ben Fogelgren; Joshua H. Lipschutz

Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.


Journal of Biological Chemistry | 2008

Matrix Metalloproteinase 13 (MMP13) and Tissue Inhibitor of Matrix Metalloproteinase 1 (TIMP1), Regulated by the MAPK Pathway, Are Both Necessary for Madin-Darby Canine Kidney Tubulogenesis

Nathan E. Hellman; June T. Spector; Jonathan Robinson; Xiaofeng Zuo; Sophie Saunier; Corinne Antignac; John W. Tobias; Joshua H. Lipschutz

A classic model of tubulogenesis utilizes Madin-Darby canine kidney (MDCK) cells. MDCK cells form monoclonal cysts in three-dimensional collagen and tubulate in response to hepatocyte growth factor, which activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway. It was shown previously that MAPK activation is necessary and sufficient to induce the first stage of tubulogenesis, the partial epithelial to mesenchymal transition (p-EMT), whereas matrix metalloproteinases (MMPs) are necessary for the second redifferentiation stage. To identify specific MMP genes, their regulators, tissue inhibitors of matrix metalloproteinases (TIMPs), and the molecular pathways by which they are activated, we used two distinct MAPK inhibitors and a technique we have termed subtraction pathway microarray analysis. Of the 19 MMPs and 3 TIMPs present on the Canine Genome 2.0 Array, MMP13 and TIMP1 were up-regulated 198- and 169-fold, respectively, via the MAPK pathway. This was confirmed by two-dimensional and three-dimensional real time PCR, as well as in MDCK cells inducible for the MAPK gene Raf. Knockdown of MMP13 using short hairpin RNA prevented progression past the initial phase of p-EMT. Knockdown of TIMP1 prevented normal cystogenesis, although the initial phase of p-EMT did occasionally occur. The MMP13 knockdown phenotype is likely because of decreased collagenase activity, whereas the TIMP1 knockdown phenotype appears due to increased apoptosis. These data suggest a model, which may also be important for development of other branched organs, whereby the MAPK pathway controls both MDCK p-EMT and redifferentiation, in part by activating MMP13 and TIMP1.


Biochimica et Biophysica Acta | 2013

Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury

Hee-Seong Jang; Sang Jun Han; Jee In Kim; Sanggyu Lee; Joshua H. Lipschutz; Kwon Moo Park

Extracellular signal-regulated kinase (ERK) signals play important roles in cell death and survival. However, the role of ERK in the repair process after injury remains to be defined in the kidney. Here, we investigated the role of ERK in proliferation and differentiation of tubular epithelial cells, and proliferation of interstitial cells following ischemia/reperfusion (I/R) injury in the mouse kidney. Mice were subjected to 30min of renal ischemia. Some mice were administered with U0126, a specific upstream inhibitor of ERK, daily during the recovery phase, beginning at 1day after ischemia until sacrifice. I/R caused severe tubular cell damage and functional loss in the kidney. Nine days after ischemia, the kidney was restored functionally with a partial restoration of damaged tubules and expansion of fibrotic lesions. ERK was activated by I/R and the activated ERK was sustained for 9days. U0126 inhibited the proliferation, basolateral relocalization of Na,K-ATPase and lengthening of primary cilia in tubular epithelial cells, whereas it enhanced the proliferation of interstitial cells and accumulation of extracellular matrix. Furthermore, U0126 elevated the expression of cell cycle arrest-related proteins, p21 and phospholylated-chk2 in the post-ischemic kidney. U0126 mitigated the post-I/R increase of Sec10 which is a crucial component of exocyst complex and an important factor in ciliogenesis and tubulogenesis. U0126 also enhanced the expression of fibrosis-related proteins, TGF-β1 and phosphorylated NF-κB after ischemia. Our findings demonstrate that activation of ERK is required for both the restoration of damaged tubular epithelial cells and the inhibition of fibrosis progression following injury.


The Prostate | 1997

Differentiation of rat neonatal ventral prostates grown in a serum‐free organ culture system

Joshua H. Lipschutz; Barbara A. Foster; Gerald R. Cunha

Organ culture methods have long been used in the study of the prostate because effects of drugs and hormones can be examined in the absence of systemic effects.


Current protocols in pharmacology | 2001

Analysis of Membrane Traffic in Polarized Epithelial Cells

Joshua H. Lipschutz; Lucy Erin O'Brien; Yoram Altschuler; Dana Avrahami; Yen Nguyen; Kitty Tang; Keith E. Mostov

Spatial asymmetry is fundamental to the structure and function of most eukaryotic cells. A basic aspect of this polarity is that the cells plasma membrane is divided into discrete domains. The best studied and simplest example of this occurs in epithelial cells, which line exposed body surfaces. Epithelial cells use two pathways to send proteins to the cell surface. Newly made proteins can travel directly from the trans‐Golgi network (TGN) to either the apical or basolateral surface. Alternatively, proteins can be sent to the basolateral surface and then endocytosed and transcytosed to the apical surface. Epithelial cells grown on porous filters adopt a typical polarized morphology; transfected epithelial cells can be used to biosynthetically characterize the trafficking patterns of a given protein. These cells can also be used to study delivery to a particular surface and to localize the protein by immunofluorescence.

Collaboration


Dive into the Joshua H. Lipschutz's collaboration.

Top Co-Authors

Avatar

Xiaofeng Zuo

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ben Fogelgren

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Snyder

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kwon Moo Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Daniel F. Balkovetz

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liwei Huang

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Wei Guo

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge