Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofeng Zuo is active.

Publication


Featured researches published by Xiaofeng Zuo.


Nature Cell Biology | 2006

Exo70 interacts with the Arp2/3 complex and regulates cell migration

Xiaofeng Zuo; Jian Zhang; Ying Zhang; Shu-Chan Hsu; Daoguo Zhou; Wei Guo

The exocyst is a multiprotein complex essential for tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. Here, we report that the exocyst component Exo70 interacts with the Arp2/3 complex, a key regulator of actin polymerization. We further show that the exocyst–Arp2/3 interaction is regulated by epidermal growth factor (EGF) signalling. Inhibition of Exo70 by RNA interference (RNAi) or antibody microinjection blocks the formation of actin-based membrane protrusions and affects various aspects of cell motility. We propose that Exo70, in addition to functioning in exocytosis, also regulates actin at the leading edges of migrating cells, therefore coordinating cytoskeleton and membrane traffic during cell migration.


Molecular Biology of the Cell | 2009

The Exocyst Protein Sec10 Is Necessary for Primary Ciliogenesis and Cystogenesis In Vitro

Xiaofeng Zuo; Wei Guo; Joshua H. Lipschutz

Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, in which they are felt to participate in flow sensing and have been linked to the pathogenesis of cystic renal disorders such as autosomal dominant polycystic kidney disease. We previously localized the exocyst, an eight-protein complex involved in membrane trafficking, to the primary cilium of Madin-Darby canine kidney cells and showed that it was involved in cystogenesis. Here, using short hairpin RNA (shRNA) to knockdown exocyst expression and stable transfection to induce exocyst overexpression, we show that the exocyst protein Sec10 regulates primary ciliogenesis. Using immunofluorescence, scanning, and transmission electron microscopy, primary cilia containing only basal bodies are seen in the Sec10 knockdown cells, and increased ciliogenesis is seen in Sec10-overexpressing cells. These phenotypes do not seem to be because of gross changes in cell polarity, as apical, basolateral, and tight junction proteins remain properly localized. Sec10 knockdown prevents normal cyst morphogenesis when the cells are grown in a collagen matrix, whereas Sec10 overexpression results in increased cystogenesis. Transfection with human Sec10 resistant to the canine shRNA rescues the phenotype, demonstrating specificity. Finally, Par3 was recently shown to regulate primary cilia biogenesis. Par3 and the exocyst colocalized by immunofluorescence and coimmunoprecipitation, consistent with a role for the exocyst in targeting and docking vesicles carrying proteins necessary for primary ciliogenesis.


PLOS Genetics | 2011

The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes.

Ben Fogelgren; Shin-Yi Lin; Xiaofeng Zuo; Kimberly M. Jaffe; Kwon Moo Park; Ryan Reichert; P. Darwin Bell; Rebecca D. Burdine; Joshua H. Lipschutz

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown—including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation—suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.


Journal of Biological Chemistry | 2011

The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells

Xiaofeng Zuo; Ben Fogelgren; Joshua H. Lipschutz

Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.


Molecular Biology of the Cell | 2016

Arl13b and the exocyst interact synergistically in ciliogenesis

Cecília Seixas; Soo Young Choi; Noemi Polgar; Nicole L. Umberger; Michael P. East; Xiaofeng Zuo; Hugo Moreiras; Rania Ghossoub; Alexandre Benmerah; Richard A. Kahn; Ben Fogelgren; Tamara Caspary; Joshua H. Lipschutz; Duarte C. Barral

A novel Arl13b effector is identified. Sec8 and Sec5 exocyst subunits are shown to interact with Arl13b in a GTP-dependent manner. This interaction is synergistic in phenotypes caused by impaired ciliogenesis during zebrafish development. Similar to Sec10, Arl13b depletion in mouse kidneys inhibits ciliogenesis and leads to the formation of cysts.


American Journal of Physiology-renal Physiology | 2010

Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway

Kwon Moo Park; Ben Fogelgren; Xiaofeng Zuo; Jinu Kim; Daniel C. Chung; Joshua H. Lipschutz

Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and reperfusion (I/R) injury. When cultured on plastic, Madin-Darby canine kidney (MDCK) cells overexpressing Sec10, a central exocyst component, formed domes showing increased resistance to hydrogen peroxide (H2O2). Transepithelial electric resistance (TER) of Sec10-overexpressing MDCK cells grown on Transwell filters was higher than in control MDCK cells, and the rate of TER decrease following H2O2 treatment was less in Sec10-overexpressing MDCK cells compared with control MDCK cells. After removal of H2O2, TER returned to normal more rapidly in Sec10-overexpressing compared with control MDCK cells. In collagen culture MDCK cells form cysts, and H2O2 treatment damaged Sec10-overexpressing MDCK cell cysts less than control MDCK cell cysts. The MAPK pathway has been shown to protect animals from I/R injury. Levels of active ERK, the final MAPK pathway step, were higher in Sec10-overexpressing compared with control MDCK cells. U0126 inhibited ERK activation, exacerbated the H2O2-induced decrease in TER and cyst disruption, and delayed recovery of TER following H2O2 removal. Finally, in mice with renal I/R injury, exocyst expression decreased early and returned to normal concomitant with functional recovery, suggesting that the exocyst may be involved in the recovery following I/R injury.


PLOS ONE | 2015

Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions.

Ben Fogelgren; Noemi Polgar; Vanessa H. Lui; Amanda J. Lee; Kadee-Kalia Tamashiro; Josephine Andrea Napoli; Chad B. Walton; Xiaofeng Zuo; Joshua H. Lipschutz

Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6–14 hours after birth. Sec10FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions.


Nephron Experimental Nephrology | 2014

Wnt5a Is Necessary for Normal Kidney Development in Zebrafish and Mice

Liwei Huang; An Xiao; Soo Young Choi; Quane Kan; Weibin Zhou; Maria F. Chacon-Heszele; Yun Kyoung Ryu; Sarah McKenna; Xiaofeng Zuo; Rejji Kuruvilla; Joshua H. Lipschutz

Background: Wnt5a is important for the development of various organs and postnatal cellular function. Little is known, however, about the role of Wnt5a in kidney development, although WNT5A mutations were identified in patients with Robinow syndrome, a genetic disease which includes developmental defects in kidneys. Our goal in this study was to determine the role of Wnt5a in kidney development. Methods: Whole-mount in situ hybridization was used to establish the expression pattern of Wnt5a during kidney development. Zebrafish with wnt5a knockdown and Wnt5a global knockout mice were used to identify kidney phenotypes. Results: In zebrafish, wnt5a knockdown resulted in glomerular cyst formation and dilated renal tubules. In mice, Wnt5a global knockout resulted in pleiotropic, but severe, kidney phenotypes, including agenesis, fused kidney, hydronephrosis and duplex kidney/ureter. Conclusions: Our data demonstrated the important role of Wnt5a in kidney development. Disrupted Wnt5a resulted in kidney cysts in zebrafish and pleiotropic abnormal kidney development in mice.


Physiological Reports | 2014

The exocyst and regulatory GTPases in urinary exosomes

Maria F. Chacon-Heszele; Soo Young Choi; Xiaofeng Zuo; Jeong-In Baek; Christopher J. Ward; Joshua H. Lipschutz

Cilia, organelles that function as cellular antennae, are central to the pathogenesis of “ciliopathies”, including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell–cell communication, called “urocrine signaling”, hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome‐like vesicles, or ELVs), carry cilia‐specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight‐protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin–Darby canine kidney (MDCK) cells expressing either Sec10‐myc (a central component of the exocyst complex) or Smoothened‐YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass‐spectrometry‐based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs.


Nephron extra | 2011

Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach

Daniel C. Chung; Ben Fogelgren; Kwon Moo Park; Jessica Heidenberg; Xiaofeng Zuo; Liwei Huang; Jean Bennett; Joshua H. Lipschutz

Background/Aims: Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells. Methods: Adeno-associated virus (AAV) offers these advantages and few, if any, disadvantages, and over 100 isolates exist. We previously showed that AAV-mediated gene therapy can be used to restore vision to patients with Leber’s congenital amaurosis, a disease of childhood blindness. Results: Here we show that novel recombinant AAV2/8 and AAV2/9 transduce kidney tubule cells with high efficiency both in vitroin cell culture and in vivoin mice. In addition, we adapted and modified a retrograde approach to allow for optimal transgene delivery to renal tubular cells that further minimizes the risk of an immunogenic reaction. Conclusions: We believe that recombinant AAV2, especially AAV2/8, gene delivery to renal tubule cells via a retrograde approach represents a viable method for gene therapy for a multitude of renal disorders ranging from autosomal dominant polycystic kidney disease to acute kidney injury.

Collaboration


Dive into the Xiaofeng Zuo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Fogelgren

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Soo Young Choi

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jeong-In Baek

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Liwei Huang

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwon Moo Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Sarah McKenna

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Noemi Polgar

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Seok-Hyung Kim

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge