Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. R. Meinhold is active.

Publication


Featured researches published by P. R. Meinhold.


Astronomy and Astrophysics | 2010

Planck Pre-Launch Status: Expected LFI Polarisation Capability

J. P. Leahy; M. Bersanelli; O. D'Arcangelo; K. Ganga; S. Leach; A. Moss; E. Keihänen; Reijo Keskitalo; H. Kurki-Suonio; T. Poutanen; M. Sandri; D. Scott; J. A. Tauber; L. Valenziano; F. Villa; A. Wilkinson; A. Zonca; C. Baccigalupi; J. Borrill; R. C. Butler; F. Cuttaia; R. J. Davis; M. Frailis; E. Francheschi; S. Galeotta; A. Gregorio; R. Leonardi; N. Mandolesi; M. Maris; P. R. Meinhold

We present a system-level description of the Low Frequency Instrument (LFI) considered as a differencing polarimeter, and evaluate its expected performance. The LFI is one of the two instruments on board the ESA Planck mission to study the cosmic microwave background. It consists of a set of 22 radiometers sensitive to linear polarisation, arranged in orthogonally-oriented pairs connected to 11 feed horns operating at 30, 44 and 70 GHz. In our analysis, the generic Jones and Mueller-matrix formulations for polarimetry are adapted to the special case of the LFI. Laboratory measurements of flight components are combined with optical simulations of the telescope to investigate the values and uncertainties in the system parameters affecting polarisation response. Methods of correcting residual systematic errors are also briefly discussed. The LFI has beam-integrated polarisation efficiency >99% for all detectors, with uncertainties below 0.1%. Indirect assessment of polarisation position angles suggests that uncertainties are generally less than 0°.5, and this will be checked in flight using observations of the Crab nebula. Leakage of total intensity into the polarisation signal is generally well below the thermal noise level except for bright Galactic emission, where the dominant effect is likely to be spectral-dependent terms due to bandpass mismatch between the two detectors behind each feed, contributing typically 1–3% leakage of foreground total intensity. Comparable leakage from compact features occurs due to beam mismatch, but this averages to < 5 × 10^(-4) for large-scale emission. An inevitable feature of the LFI design is that the two components of the linear polarisation are recovered from elliptical beams which differ substantially in orientation. This distorts the recovered polarisation and its angular power spectrum, and several methods are being developed to correct the effect, both in the power spectrum and in the sky maps. The LFI will return a high-quality measurement of the CMB polarisation, limited mainly by thermal noise. To meet our aspiration of measuring polarisation at the 1% level, further analysis of flight and ground data is required. We are still researching the most effective techniques for correcting subtle artefacts in polarisation; in particular the correction of bandpass mismatch effects is a formidable challenge, as it requires multi-band analysis to estimate the spectral indices that control the leakage.


Astronomy and Astrophysics | 2002

1=f noise and other systematic effects in the Planck-LFI radiometers

M. D. Seiffert; Aniello Mennella; C. Burigana; Nazzareno Mandolesi; M. Bersanelli; P. R. Meinhold; Phil Lubin

We use an analytic approach to study the susceptibility of the Planck Low Frequency Instrument radiometers to various systematic eects. We examine the eects of fluctuations in amplifier gain, in amplifier noise temperature and in the reference load temperature. We also study the eect of imperfect gain modulation, non-ideal matching of radiometer parameters, imperfect isolation in the two legs of the radiometer and back-end 1=f noise. We find that with proper gain modulation 1=f gain fluctuations are suppressed, leaving fluctuations in amplifier noise temperature as the main source of 1=f noise. We estimate that with a gain modulation factor within1% of its ideal value the overall 1=f knee frequency will be relatively small (<0.1 Hz).


The Astrophysical Journal | 1995

Degree-scale anisotropy in the cosmic microwave background: SP94 results

Joshua O. Gundersen; Mark A. Lim; John William Staren; Carlos Alexandre Wuensche; Newton Figueiredo; T. Gaier; Timothy Koch; P. R. Meinhold; M. Seiffert; G. Cook

We present results from two observations of the cosmic microwave background (CMB) performed from the South Pole during the 1993-1994 austral summer. Each observation employed a 3 deg peak-to-peak sinusoidal, single-difference chop and consisted of a 20 deg x 1 deg strip on the sky. The first observation used a receiver which operates in three channels between 38 and 45 GHz (Q-band) with a full width half maximum (FWHM) beam which varies from 1 deg to 1.15 deg. The second observation overlapped the first observation and used a receiver which operates in four channels between 26 and 36 GHz (Ka-band) with a FWHM beam which varies from 1.5 deg to 1.7 deg. Significant correlated structure is observed in all channels for each observation. The spectrum of the structure is consistent with a CMB spectrum and is formally inconsistent with diffuse synchrotron and free-free emission at the 5 sigma level. The amplitude of the structure is inconsistent with 20 K interstellar dust; however, the data do not discriminate against flat or inverted spectrum point sources. The root mean square amplitude (+/- 1 sigma) of the combined (Ka + Q) data is Delta T(sub rms) = 41.2(sup +15.5, sub -6.7) micro-K for an average window function which has a peak value of 0.97 at l = 68 and drops to e(exp -0.5) of the peak value at l = 36 and l = 106. A band power estimate of the CMB power spectrum, C(sub l), gives average value of (C(sub l)l(l + 1)/(2 pi))(sub B) = 1.77(sup +1.58, sub -0.54) x 10(exp -10).


The Astrophysical Journal | 1996

Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.′5 Scales near the Stars HR 5127 and φ Herculis

S. T. Tanaka; A. C. Clapp; M. J. Devlin; N. Figueiredo; J. O. Gundersen; S. Hanany; Viktor V. Hristov; A. E. Lange; M. A. Lim; P. M. Lubin; P. R. Meinhold; P. L. Richards; George F. Smoot; J. W. Staren

We present measurements of cosmic microwave background (CMB) anisotropy near the stars HR 5127 and Herculis from the fifth flight of the Millimeter-wave Anisotropy eXperiment (MAX). We scanned 8° strips of the sky with an approximately Gaussian 05 FWHM beam and a 14 peak to peak sinusoidal chop. The instrument has four frequency bands centered at 3.5, 6, 9, and 14 cm-1. The IRAS 100 μm map predicts that these two regions have low interstellar dust contrast. The HR 5127 data are consistent with CMB anisotropy. The Herculis data, which were measured at lower flight altitudes, show time variability at 9 and 14 cm-1, which we believe to be due to atmospheric emission. However, the Herculis data at 3.5 and 6 cm-1 are essentially independent of this atmospheric contribution and are consistent with CMB anisotropy. Confusion from Galactic foregrounds is unlikely based on the spectrum and amplitude of the structure at these frequencies. If the observed HR 5127 structure and the atmosphere-independent Herculis structure are attributed to CMB anisotropy, then we find ΔT/T = l(l + 1)Cl/2π1/2 = 1.2+ 0.4−0.3 × 10-5 for HR 5127 and 1.9+ 0.7−0.4 × 10-5 for Herculis in the flat band approximation. The upper and lower limits represent a 68% confidence interval added in quadrature with a 10% calibration uncertainty.


Astronomy and Astrophysics | 2003

Offset balancing in pseudo-correlation radiometers for CMB measurements

Aniello Mennella; M. Bersanelli; M. D. Seiffert; D. Kettle; Neil Roddis; Althea Wilkinson; P. R. Meinhold

Radiometeric CMB measurements need to be highly stable and this stability is best obtained with differential re- ceivers. The residual 1/f noise in the differential output is strongly dependent on the radiometer input offset which can be can- celled using various balancing strategies. In this paper we discuss a software method implemented in the PLANCK-LFI pseudo- correlation receivers which uses a tunable gain modulation factor, r, in the sky-load difference. Numerical simulations and experimental data show how proper tuning of the parameter r ensures a very stable differential output with knee frequencies of the order of few mHz. Various approaches to calculate r using the radiometer total power data are discussed with some examples relevant to PLANCK-LFI. Although the paper focuses on pseudo-correlation receivers and the examples are relative to PLANCK-LFI, the proposed method and its analysis is general and can be applied to a large class of differential radiometric receivers.


Journal of Instrumentation | 2009

Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit

L. Valenziano; F. Cuttaia; A. De Rosa; L. Terenzi; A Brighenti; G P Cazzola; A Garbesi; S Mariotti; G Orsi; L. Pagan; F. Cavaliere; M. Biggi; R. Lapini; E Panagin; Paola Battaglia; R. C. Butler; M. Bersanelli; O. D'Arcangelo; S Levin; Nazzareno Mandolesi; A. Mennella; G. Morgante; G. Morigi; M. Sandri; A. Simonetto; M. Tomasi; F. Villa; M. Frailis; S. Galeotta; A. Gregorio

The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CRTM, cooled to ~ 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electro-formed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system.


The Astrophysical Journal | 1996

The second measurement of anisotropy in the cosmic microwave background radiation at 0.°5 scales near the star μ Pegasi

M. A. Lim; A. C. Clapp; M. J. Devlin; Newton Figueiredo; J. O. Gundersen; S. Hanany; Viktor V. Hristov; A. E. Lange; P. M. Lubin; P. R. Meinhold; P. L. Richards; J. W. Staren; George F. Smoot; S. T. Tanaka

During the fifth flight of the Microwave Anisotropy Experiment (MAX5), we revisited a region with significant dust emission near the star mu Pegasi. A 3.5 cm(-1) low-frequency channel has been added since the previous measurement (Meinhold et al. 1993a). The data in each channel clearly show structure correlated with IRAS 100 mu m dust emission. The spectrum of the structure in the 6, 9, and 14 cm(-1)channels is described by I-v proportional to nu(beta)B(nu) (T-dust),where beta = 1.3 and T-dust = 19 K and B-v is the Planck function. However, this model predicts a smaller amplitude in the 3.5 cm(-1) band than is observed. Considering only linear combinations of the data independent of the best-fit foreground spectrum for the three lower channels, we find an upper limit to CMBR fluctuations of Delta T/T =(C(l)l(l + 1)/2 pi)(1/2) less than or equal to 1.3 x 10(-5) at the 95 percent confidence level. The result is for a flat-band power spectrum and does not include a 10 percent uncertainty in calibration. It is consistent with our previous observation in the region.


The Astrophysical Journal | 1992

A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

Marc L. Fischer; David C. Alsop; Edward S. Cheng; A. C. Clapp; David A. Cottingham; Joshua O. Gundersen; Timothy Koch; E. Kreysa; P. R. Meinhold; A. E. Lange; P. M. Lubin; P. L. Richards; George F. Smoot

We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.


Astronomy and Astrophysics | 2010

Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance

A. Mennella; M. Bersanelli; R. C. Butler; F. Cuttaia; O. D'Arcangelo; R. J. Davis; M. Frailis; S. Galeotta; A. Gregorio; C. R. Lawrence; R. Leonardi; S. R. Lowe; Nazzareno Mandolesi; M. Maris; P. R. Meinhold; L. Mendes; G. Morgante; M. Sandri; L. Stringhetti; L. Terenzi; M. Tomasi; L. Valenziano; F. Villa; A. Zacchei; A. Zonca; M. Balasini; C. Franceschet; P. Battaglia; P. M. Lapolla; P. Leutenegger

We present the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our optimal pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f stability and rejection of instrumental systematic effects; its measured noise performance shows that LFI is the most sensitive instrument of its kind. The calibration parameters will be updated during flight operations until the end of the mission.


Journal of Instrumentation | 2009

Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

R. J. Davis; A. Wilkinson; R D Davies; W F Winder; N. Roddis; E. Blackhurst; D Lawson; S. R. Lowe; C Baines; M Butlin; A Galtress; D Shepherd; B. Aja; E. Artal; M. Bersanelli; R. C. Butler; C Castelli; F. Cuttaia; O. D'Arcangelo; T. Gaier; R. Hoyland; D. Kettle; R. Leonardi; Nazzareno Mandolesi; A. Mennella; P. R. Meinhold; M Pospieszalski; L. Stringhetti; M. Tomasi; L. Valenziano

We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.

Collaboration


Dive into the P. R. Meinhold's collaboration.

Top Co-Authors

Avatar

P. M. Lubin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. D. Seiffert

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. E. Lange

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. C. Clapp

University of California

View shared research outputs
Top Co-Authors

Avatar

Newton Figueiredo

Universidade Federal de Itajubá

View shared research outputs
Top Co-Authors

Avatar

T. Gaier

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge