Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Mishin is active.

Publication


Featured researches published by Vladimir Mishin.


Free Radical Biology and Medicine | 2010

Application of the Amplex Red/Horseradish Peroxidase Assay to Measure Hydrogen Peroxide Generation by Recombinant Microsomal Enzymes

Vladimir Mishin; Joshua P. Gray; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

The formation of reactive oxygen species by the cytochrome P450 monooxygenase system is thought to be due to autoxidation of NADPH-cytochrome P450 reductase and the nonproductive decay of oxygen-bound cytochrome P450 intermediates. To characterize this process in recombinant microsomal enzymes, we used a highly sensitive hydrogen peroxide assay based on Amplex red oxidation. This assay is 20 times more sensitive (LLD=5.0pmol/assay and LLQ=30pmol/assay) than the standard ferrous thiocyanate assay for detection of hydrogen peroxide. We found low, but detectable, spontaneous generation of hydrogen peroxide by recombinant human NADPH-cytochrome P450 reductase complexes (0.09nmol hydrogen peroxide/min/100Units of NADPH-cytochrome P450 reductase). Significantly higher rates of hydrogen peroxide production were observed when recombinant cytochrome P450 enzymes were coexpressed with NADPH-cytochrome P450 reductase (0.31nmol of hydrogen peroxide/min/100Units of NADPH-cytochrome P450 reductase). This was independent of the addition of any exogenous cytochrome P450 substrates. These data demonstrate that cytochrome P450s are a major source of hydrogen peroxide in the recombinant cytochrome P450 monooxygenase system. Moreover, substrate binding is not required for the cytochrome P450s to generate reactive oxygen species.


Journal of Biological Chemistry | 2007

Paraquat Increases Cyanide-insensitive Respiration in Murine Lung Epithelial Cells by Activating an NAD(P)H:Paraquat Oxidoreductase IDENTIFICATION OF THE ENZYME AS THIOREDOXIN REDUCTASE

Joshua P. Gray; Diane E. Heck; Vladimir Mishin; Peter J. Smith; Jun-Yan Hong; Mona Thiruchelvam; Deborah A. Cory-Slechta; Debra L. Laskin; Jeffrey D. Laskin

Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10–100 μm) was found to cause a 2–4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 μm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.


Free Radical Biology and Medicine | 2011

Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase

Karma C. Fussell; Joshua P. Gray; Vladimir Mishin; Peter J. Smith; Diane E. Heck; Jeffrey D. Laskin

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.


Toxicological Sciences | 2012

Role of galectin-3 in acetaminophen-induced hepatotoxicity and inflammatory mediator production.

Ana-Cristina Dragomir; Richard Sun; Vladimir Mishin; LeRoy Hall; Jeffrey D. Laskin; Debra L. Laskin

Galectin-3 (Gal-3) is a β-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1β. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication.


Toxicology and Applied Pharmacology | 2010

Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.


Molecular Cancer Therapeutics | 2010

Distinct Roles of Cytochrome P450 Reductase in Mitomycin c Redox Cycling and Cytotoxicity

Yun Wang; Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Mitomycin c (MMC), a quinone-containing anticancer drug, is known to redox cycle and generate reactive oxygen species. A key enzyme mediating MMC redox cycling is cytochrome P450 reductase, a microsomal NADPH-dependent flavoenzyme. In the present studies, Chinese hamster ovary (CHO) cells overexpressing this enzyme (CHO-OR cells) and corresponding control cells (CHO-WT cells) were used to investigate the role of cytochrome P450 reductase in the actions of MMC. In lysates from both cell types, MMC was found to redox cycle and generate H2O2; this activity was greater in CHO-OR cells (Vmax = 1.2 ± 0.1 nmol H2O2/min/mg protein in CHO-WT cells versus 32.4 ± 3.9 nmol H2O2/min/mg protein in CHO-OR cells). MMC was also more effective in generating superoxide anion and hydroxyl radicals in CHO-OR cells, relative to CHO-WT cells. Despite these differences in MMC redox cycling, MMC-induced cytotoxicity, as measured by growth inhibition, was similar in the two cell types (IC50 = 72 ± 20 nmol/L for CHO-WT and 75 ± 23 nmol/L for CHO-OR cells), as was its ability to induce G2-M and S phase arrest. Additionally, in nine different tumor cell lines, although a strong correlation was observed between MMC-induced H2O2 generation and cytochrome P450 reductase activity, there was no relationship between redox cycling and cytotoxicity. Hypoxia, which stabilizes MMC radicals generated by redox cycling, also had no effect on the sensitivity of tumor cells to MMC-induced cytotoxicity. These data indicate that NADPH cytochrome P450 reductase–mediated MMC redox cycling is not involved in the cytotoxicity of this chemotherapeutic agent. Mol Cancer Ther; 9(6); 1852–63. ©2010 AACR.


Free Radical Biology and Medicine | 2008

Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity

Yun Wang; Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

The one-electron reduction of redox-active chemotherapeutic agents generates highly toxic radical anions and reactive oxygen intermediates (ROI). A major enzyme catalyzing this process is cytochrome P450 reductase. Because many tumor cells highly express this enzyme, redox cycling of chemotherapeutic agents in these cells may confer selective antitumor activity. Nitrofurantoin is a commonly used redox-active antibiotic that possesses antitumor activity. In the present studies we determined whether nitrofurantoin redox cycling is correlated with cytochrome P450 reductase activity and cytotoxicity in a variety of cell lines. Recombinant cytochrome P450 reductase was found to support redox cycling of nitrofurantoin and to generate superoxide anion, hydrogen peroxide, and, in the presence of redox-active iron, hydroxyl radicals. This activity was NADPH dependent and inhibitable by diphenyleneiodonium, indicating a requirement for the flavin cofactors in the reductase. Nitrofurantoin-induced redox cycling was next analyzed in different cell lines varying in cytochrome P450 reductase activity including Chinese hamster ovary cells (CHO-OR) constructed to overexpress the enzyme. Nitrofurantoin-induced hydrogen peroxide production was 16-fold greater in lysates from CHO-OR cells than from control CHO cells. A strong correlation between cytochrome P450 reductase activity and nitrofurantoin-induced redox cycling among the cell lines was found. Unexpectedly, no correlation between nitrofurantoin-induced ROI production and cytotoxicity was observed. These data indicate that nitrofurantoin-induced redox cycling and subsequent generation of ROI are not sufficient to mediate cytotoxicity and that cytochrome P450 reductase is not a determinant of sensitivity to redox-active chemotherapeutic agents.


Toxicology and Applied Pharmacology | 2008

UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes

Adrienne T. Black; Joshua P. Gray; Michael P. Shakarjian; Vladimir Mishin; Debra L. Laskin; Diane E. Heck; Jeffrey D. Laskin

Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE(2), PGF(2alpha), PGD(2) and PGI(2) (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE(2), PGD(2) and the PGD(2) metabolite PGJ(2). Twenty-four hours after treatment with UVB (25 mJ/cm(2)), production of PGE(2) and PGJ(2) increased, while PGD(2) production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm(2)) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE(2) (EP1 and EP2), PGD(2) (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.


Toxicology and Applied Pharmacology | 2013

The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

Ruijin Zheng; Iris P. Po; Vladimir Mishin; Adrienne T. Black; Diane E. Heck; Debra L. Laskin; Patrick J. Sinko; Donald R. Gerecke; Marion K. Gordon; Jeffrey D. Laskin

The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm(2)) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10h with 30 μM 4-HNE or 6h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard.


Toxicology and Applied Pharmacology | 2014

Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product.

Ruijin Zheng; Diane E. Heck; Vladimir Mishin; Adrienne T. Black; Michael P. Shakarjian; Ah-Ng Tony Kong; Debra L. Laskin; Jeffrey D. Laskin

4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86-98 fold within 6h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2-/- mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress.

Collaboration


Dive into the Vladimir Mishin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua P. Gray

United States Coast Guard Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason R. Richardson

Northeast Ohio Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Wang

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge