Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua S. Apte is active.

Publication


Featured researches published by Joshua S. Apte.


Environmental Science & Technology | 2016

Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

Michael Brauer; Greg Freedman; Joseph Frostad; Aaron van Donkelaar; Randall V. Martin; Frank Dentener; Rita Van Dingenen; Kara Estep; Heresh Amini; Joshua S. Apte; Kalpana Balakrishnan; Lars Barregard; David M. Broday; Valery L. Feigin; Santu Ghosh; Philip K. Hopke; Luke D. Knibbs; Yoshihiro Kokubo; Yang Liu; Stefan Ma; Lidia Morawska; José Luis Texcalac Sangrador; Gavin Shaddick; H. Ross Anderson; Theo Vos; Mohammad H. Forouzanfar; Richard T. Burnett; Aaron Cohen

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the worlds population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Environmental Science & Technology | 2015

Addressing Global Mortality from Ambient PM2.5

Joshua S. Apte; Julian D. Marshall; Aaron Cohen; Michael Brauer

Ambient fine particulate matter (PM2.5) has a large and well-documented global burden of disease. Our analysis uses high-resolution (10 km, global-coverage) concentration data and cause-specific integrated exposure-response (IER) functions developed for the Global Burden of Disease 2010 to assess how regional and global improvements in ambient air quality could reduce attributable mortality from PM2.5. Overall, an aggressive global program of PM2.5 mitigation in line with WHO interim guidelines could avoid 750 000 (23%) of the 3.2 million deaths per year currently (ca. 2010) attributable to ambient PM2.5. Modest improvements in PM2.5 in relatively clean regions (North America, Europe) would result in surprisingly large avoided mortality, owing to demographic factors and the nonlinear concentration-response relationship that describes the risk of particulate matter in relation to several important causes of death. In contrast, major improvements in air quality would be required to substantially reduce mortality from PM2.5 in more polluted regions, such as China and India. Moreover, forecasted demographic and epidemiological transitions in India and China imply that to keep PM2.5-attributable mortality rates (deaths per 100 000 people per year) constant, average PM2.5 levels would need to decline by ∼20-30% over the next 15 years merely to offset increases in PM2.5-attributable mortality from aging populations. An effective program to deliver clean air to the worlds most polluted regions could avoid several hundred thousand premature deaths each year.


Environmental Science & Technology | 2012

Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources

Joshua S. Apte; Emilie Bombrun; Julian D. Marshall; William W. Nazaroff

We model intraurban intake fraction (iF) values for distributed ground-level emissions in all 3646 global cities with more than 100 000 inhabitants, encompassing a total population of 2.0 billion. For conserved primary pollutants, population-weighted median, mean, and interquartile range iF values are 26, 39, and 14–52 ppm, respectively, where 1 ppm signifies 1 g inhaled/t emitted. The global mean urban iF reported here is roughly twice as large as previous estimates for cities in the United States and Europe. Intake fractions vary among cities owing to differences in population size, population density, and meteorology. Sorting by size, population-weighted mean iF values are 65, 35, and 15 ppm, respectively, for cities with populations larger than 3, 0.6–3, and 0.1–0.6 million. The 20 worldwide megacities (each >10 million people) have a population-weighted mean iF of 83 ppm. Mean intraurban iF values are greatest in Asia and lowest in land-rich high-income regions. Country-average iF values vary by a factor of 3 among the 10 nations with the largest urban populations.


Environmental Science & Technology | 2013

Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India.

Arvind Saraswat; Joshua S. Apte; Michael Brauer; Sarah B. Henderson; Julian D. Marshall

Air pollution in New Delhi, India, is a significant environmental and health concern. To assess determinants of variability in air pollutant concentrations, we develop land use regression (LUR) models for fine particulate matter (PM2.5), black carbon (BC), and ultrafine particle number concentrations (UFPN). We used 136 h (39 sites), 112 h (26 sites), 147 h (39 sites) of PM2.5, BC, and UFPN data respectively, to develop separate morning (0800-1200) and afternoon (1200-1800) models. Continuous measurements of PM2.5 and BC were also made at a single fixed rooftop site located in a high-income residential neighborhood. No continuous measurements of UFPN were available. In addition to spatial variables, measurements from the fixed continuous monitoring site were used as independent variables in the PM2.5 and BC models. The median concentrations (and interquartile range) of PM2.5, BC, and UFPN at LUR sites were 133 (96-232) μg m(-3), 11 (6-21) μg m(-3), and 40 (27-72) × 10(3) cm(-3) respectively. In addition (a) for PM2.5 and BC, the temporal variability was higher than the spatial variability; (b) the magnitude and spatial variability in pollutant concentrations was higher during morning than during afternoon hours. Further, model R(2) values were higher for morning (for PM2.5, BC, and UFPN, respectively: 0.85, 0.86, and 0.28) than for afternoon models (0.73, 0.69, and 0.23); (c) the PM2.5 and BC concentrations measured at LUR sites all over the city were strongly correlated with measured concentrations at a fixed rooftop site; (d) spatial patterns were similar for PM2.5 and BC but different for UFPN; (e) population density and road variables were statistically significant predictors of pollutant concentrations; and (f) available geographic predictors explained a much lower proportion of variability in measured PM2.5, BC, and UFPN than observed in other LUR studies, indicating the importance of temporal variability and suggesting the existence of uncharacterized sources.


Environmental Science & Technology | 2017

High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data

Joshua S. Apte; Kyle P. Messier; Shahzad Gani; Michael Brauer; Thomas W. Kirchstetter; Melissa M. Lunden; Julian D. Marshall; Christopher J. Portier; Roel Vermeulen; Steven P. Hamburg

Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO2, and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.


Environment International | 2015

Populations potentially exposed to traffic-related air pollution in seven world cities

Jason G. Su; Joshua S. Apte; Jonah Lipsitt; Diane A. Garcia-Gonzales; Bernardo S. Beckerman; Audrey de Nazelle; José Luis Texcalac-Sangrador; Michael Jerrett

Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health.


Environmental Research Letters | 2011

Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

Jalel Sager; Joshua S. Apte; Derek Lemoine; Daniel M. Kammen

Strong policies to constrain increasing global use of light-duty vehicles (cars and light trucks) should complement fuel efficiency and carbon intensity improvements in order to meet international greenhouse gas emission and climate targets for the year 2050.


Lawrence Berkeley National Laboratory | 2008

Window-Related Energy Consumption in the US Residential and Commercial Building Stock

Joshua S. Apte; Dariush Arasteh

Window-Related Energy Consumption in the US Residential and Commercial Building Stock J oshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads. Introduction According to the US Department of Energy, in 2003 space conditioning in residential and commercial buildings was responsible for 9.19 quadrillion Btu (Quads) of site energy consumption, and 12.03 Quads of primary (source) consumption (US DOE Office of Energy Efficiency and Renewable Energy 2005). Although windows are generally understood to be an important driver of space conditioning energy consumption, few studies have directly investigated the energy impacts of windows at the national level. In this study, we introduce a simple spreadsheet-based tool for estimating the national energy impacts of windows in residential and commercial buildings. After presenting estimates of current window-related energy consumption in the US building stock, we discuss the energy savings potential of various technology scenarios. Methods and Results This section is divided into two sub-sections. In the first section, we describe the techniques and assumptions involved in estimating the window-related energy consumption of the US building stock. In the second section, we describe the process we used to estimate the energy-savings potential of various window technologies. Window-Related Energy Consumption of Building Stock General Approach In order to estimate the energy consumption attributable to the US window stock, we used a combination of top-down and bottom-up approaches. First, we compiled a set of estimates of total space conditioning energy consumption in the US building stock, broken down by sector (residential, commercial) and conditioning mode (heating, cooling). Second, for each of these four aggregated end use categories, we combined building energy simulations with market and survey data to estimate the fraction of total energy consumption attributable to windows. We then estimated the window-related space conditioning energy consumption for each end use category by multiplying total space conditioning energy consumption by the window-related fraction of that


Environmental Science & Technology | 2017

Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

Peter Fantke; Olivier Jolliet; Joshua S. Apte; Natasha Hodas; John S. Evans; Charles J. Weschler; Katerina S. Stylianou; Matti Jantunen; Thomas E. McKone

Exposure to fine particulate matter (PM2.5) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide a set of consistent primary PM2.5 aggregated exposure factors. We followed a matrix-based mass balance approach for quantifying exposure from indoor and ground-level urban and rural outdoor sources using an effective indoor-outdoor population intake fraction and a system of archetypes to represent different levels of spatial detail. Emission-to-exposure archetypes range from global indoor and outdoor averages, via archetypal urban and indoor settings, to 3646 real-world cities in 16 parametrized subcontinental regions. Population intake fractions from urban and rural outdoor sources are lowest in Northern regions and Oceania and highest in Southeast Asia with population-weighted means across 3646 cities and 16 subcontinental regions of, respectively, 39 ppm (95% confidence interval: 4.3-160 ppm) and 2 ppm (95% confidence interval: 0.2-6.3 ppm). Intake fractions from residential and occupational indoor sources range from 470 ppm to 62 000 ppm, mainly as a function of air exchange rate and occupancy. Indoor exposure typically contributes 80-90% to overall exposure from outdoor sources. Our framework facilitates improvements in air pollution reduction strategies and life cycle impact assessments.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter

Richard T. Burnett; Hong Chen; Mieczyslaw Szyszkowicz; Neal Fann; Bryan Hubbell; C. Arden Pope; Joshua S. Apte; Michael Brauer; Aaron Cohen; Scott Weichenthal; Jay S. Coggins; Qian Di; Bert Brunekreef; Joseph Frostad; Stephen S Lim; Haidong Kan; Katherine Walker; George D. Thurston; Richard B. Hayes; Chris C. Lim; Michelle C. Turner; Michael Jerrett; Daniel Krewski; Susan M. Gapstur; W. Ryan Diver; Bart Ostro; Debbie Goldberg; Daniel L. Crouse; Randall V. Martin; Paul A. Peters

Significance Exposure to outdoor concentrations of fine particulate matter is considered a leading global health concern, largely based on estimates of excess deaths using information integrating exposure and risk from several particle sources (outdoor and indoor air pollution and passive/active smoking). Such integration requires strong assumptions about equal toxicity per total inhaled dose. We relax these assumptions to build risk models examining exposure and risk information restricted to cohort studies of outdoor air pollution, now covering much of the global concentration range. Our estimates are severalfold larger than previous calculations, suggesting that outdoor particulate air pollution is an even more important population health risk factor than previously thought. Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries—the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5–10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9–8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3–4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.

Collaboration


Dive into the Joshua S. Apte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Brauer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Thomas W. Kirchstetter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert A. Presto

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Allen L. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Ellis S. Robinson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peishi Gu

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge