Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ju Sheng is active.

Publication


Featured researches published by Ju Sheng.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dengue structure differs at the temperatures of its human and mosquito hosts

Xinzheng Zhang; Ju Sheng; Pavel Plevka; Richard J. Kuhn; Michael S. Diamond; Michael G. Rossmann

We report on a conformational transition of dengue virus when changing the temperature from that present in its mosquito vectors to that of its human host. Using cryoelectron microscopy, we show that although the virus has a smooth surface, a diameter of ∼500 Å, and little exposed membrane at room temperature, the virions have a bumpy appearance with a diameter of ∼550 Å and some exposed membrane at 37 °C. The bumpy structure at 37 °C was found to be similar to the previously predicted structure of an intermediate between the smooth mature and fusogenic forms. As humans have a body temperature of 37 °C, the bumpy form of the virus would be the form present in humans. Thus, optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed on the bumpy form of the virus.


Science | 2015

Structure and inhibition of EV-D68, a virus that causes respiratory illness in children

Yue Liu; Ju Sheng; Andrei Fokine; Geng Meng; Woong-Hee Shin; Feng Long; Richard J. Kuhn; Daisuke Kihara; Michael G. Rossmann

Targeting EV-D68, a respiratory virus A recent outbreak of respiratory illness in U.S. children was caused by entorovirus D68 (EV-D68). Enteroviruses also include human pathogens such as human rhinovirus, which causes the common cold, and poliovirus. Most of these viruses are stabilized by a factor that binds in a hydrophobic pocket of the capsid protein VP1, and antiviral compounds can act by displacing this factor. Liu et al. report the crystal structure of EV-D68 and its complex with the antiviral compound peconaril. In EV-D68, the hydrophobic pocket contained a fatty acid that was displaced by peconaril. Peconaril efficiently inhibited EV-D68 infection of cells, making it a possible drug candidate against EV-D68. Science, this issue p. 71 A virus that causes respiratory illness in children can be inhibited by an anti-rhinovirus drug. Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks.


Journal of Virology | 2015

Structure of Acidic pH Dengue Virus Showing the Fusogenic Glycoprotein Trimers

Xinzheng Zhang; Ju Sheng; S. Kyle Austin; Tabitha E. Hoornweg; Jolanda M. Smit; Richard J. Kuhn; Michael S. Diamond; Michael G. Rossmann

ABSTRACT Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted “open” fusogenic trimer. IMPORTANCE The structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an “open” conformation, which is distinct from the “closed” conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from “zipping” together the three E proteins along the domain II boundaries into the “closed” postfusion conformation, thus inhibiting fusion.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Enterovirus D68 receptor requirements unveiled by haploid genetics.

Jim Baggen; Hendrik Jan Thibaut; Jacqueline Staring; Lucas T. Jae; Yue Liu; Hongbo Guo; Jasper J. Slager; Jost W. de Bruin; Arno L. W. van Vliet; Vincent A. Blomen; Pieter Overduin; Ju Sheng; Cornelis A. M. de Haan; Erik de Vries; Adam Meijer; Michael G. Rossmann; Thijn R. Brummelkamp; Frank J. M. van Kuppeveld

Significance Enterovirus D68 (EV-D68) is an emerging pathogen that recently caused a large outbreak of severe respiratory disease in the United States and is associated with cases of paralysis. Little is known about EV-D68 host factor requirements. Here, using a genome-wide knockout approach, we identified several genes in sialic acid (Sia) biology as being essential for infection. We also showed that not only α2,6-linked Sia, which mainly occurs in the upper respiratory tract, but also α2,3-linked Sia, which mainly occurs in the lower respiratory tract, can serve as the receptor. Moreover, we identified recent EV-D68 isolates that can use an alternative, nonsialylated receptor. Our findings are essential to understand tropism and pathogenesis of EV-D68 as well as the potential of using Sia-targeting inhibitors to treat EV-D68 infections. Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.


Journal of Structural Biology | 2014

Mechanism for maturation-related reorganization of flavivirus glycoproteins

Pavel Plevka; Anthony J. Battisti; Ju Sheng; Michael G. Rossmann

Flaviviruses, such as dengue, West Nile, and yellow fever viruses, assemble as fusion-incompetent particles and subsequently undergo a large reorganization of their glycoprotein envelope resulting in formation of mature infectious virions. Here we used a combination of three-dimensional cryo-electron tomography and two-dimensional image analysis to study pleomorphic maturation intermediates of dengue virus 2. Icosahedral symmetries of immature and mature regions within one particle were mismatched relative to each other. Furthermore, the orientation of the two regions relative to each other differed among particles. Therefore, there cannot be a specific pathway determining the maturation of all particles. Instead, the region with mature structure expands when glycoproteins on its boundary acquire suitable orientation and conformation to allow them to become a stable part of the mature region. This type of maturation is possible because the envelope glycoproteins are anchored to the phospholipid bilayer that is a part of flavivirus virions and are thus restricted to movement on the two-dimensional surface of the particle. Therefore, compounds that limit movement of the glycoproteins within the virus membrane might be used as inhibitors of flavivirus maturation.


Journal of Virology | 2013

Obstruction of Dengue Virus Maturation by Fab Fragments of the 2H2 Antibody.

Zhiqing Wang; Long Li; Janice G. Pennington; Ju Sheng; Moh Lan Yap; Pavel Plevka; Geng Meng; Lei Sun; Wen Jiang; Michael G. Rossmann

ABSTRACT The 2H2 monoclonal antibody recognizes the precursor peptide on immature dengue virus and might therefore be a useful tool for investigating the conformational change that occurs when the immature virus enters an acidic environment. During dengue virus maturation, spiky, immature, noninfectious virions change their structure to form smooth-surfaced particles in the slightly acidic environment of the trans-Golgi network, thereby allowing cellular furin to cleave the precursor-membrane proteins. The dengue virions become fully infectious when they release the cleaved precursor peptide upon reaching the neutral-pH environment of the extracellular space. Here we report on the cryo-electron microscopy structures of the immature virus complexed with the 2H2 antigen binding fragments (Fab) at different concentrations and under various pH conditions. At neutral pH and a high concentration of Fab molecules, three Fab molecules bind to three precursor-membrane proteins on each spike of the immature virus. However, at a low concentration of Fab molecules and pH 7.0, only two Fab molecules bind to each spike. Changing to a slightly acidic pH caused no detectable change of structure for the sample with a high Fab concentration but caused severe structural damage to the low-concentration sample. Therefore, the 2H2 Fab inhibits the maturation process of immature dengue virus when Fab molecules are present at a high concentration, because the three Fab molecules on each spike hold the precursor-membrane molecules together, thereby inhibiting the normal conformational change that occurs during maturation.


bioRxiv | 2018

Molecular basis for the acid initiated uncoating of human enterovirus D68

Yue Liu; Ju Sheng; Michael G. Rossmann

Enterovirus D68 (EV-D68) belongs to a group of enteroviruses that contain a single positive-sense RNA genome surrounded by an icosahedral capsid. Like common cold viruses, EV-D68 mainly causes respiratory infections and is acid labile. The molecular mechanism by which the acid sensitive EV-D68 virions uncoat and deliver their genome into a host cell is unknown. Using cryo-electron microscopy (cryo-EM), we have determined the structures of the full native virion and an uncoating intermediate (the A(altered)-particle) of EV-D68 at 2.2 Å and 2.7 Å resolution. These structures showed that acid treatment of EV-D68 leads to particle expansion, externalization of the viral protein VP1 N-termini from the capsid interior, and formation of pores around the icosahedral two-fold axes through which the viral RNA can exit. Moreover, because of the low stability of EV-D68 at neutral pH, cryo-EM analyses of a mixed population of particles demonstrated the involvement of multiple structural intermediates during virus uncoating. Among these, a previously undescribed state, the expanded (“E1”) particle, shows a majority of internal regions (e.g, the VP1 N-termini) to be ordered as in the full native virion. Thus, the E1 particle acts as an intermediate in the transition from full native virions to A-particles. Molecular determinants, including a histidine-histidine pair near the two-fold axes, were identified that facilitate this transition under acidic conditions. Thus, the present work delineates the pathway of EV-D68 uncoating and provides the molecular basis for the acid lability of EV-D68 and of the related common cold viruses. Significance Statement Enterovirus D68 (EV-D68) is an emerging pathogen that primarily causes childhood respiratory infections and is linked to neurological diseases. It was unclear how the virus uncoats and delivers its genome into a host cell to establish viral replication. Using high resolution cryo-electron microscopy, we showed that acid induces structural rearrangements of EV-D68 to initiate genome release from the virus. Structural analyses delineated a viral uncoating pathway that involves multiple distinct conformational states. Particularly, the structure of a previously unknown uncoating intermediate enabled the identification of molecular determinants that facilitate EV-D68 uncoating in an acidic environment. These results advance the knowledge of cell entry of EV-D68 and open up possibilities for developing antiviral therapeutics that impede structural rearrangements of the virus.


Nature Communications | 2015

Sialic acid-dependent cell entry of human enterovirus D68

Yue Liu; Ju Sheng; Jim Baggen; Geng Meng; Chuan Xiao; Hendrik Jan Thibaut; Frank J. M. van Kuppeveld; Michael G. Rossmann


Science | 2015

Virus structure. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children.

Yue Liu; Ju Sheng; Andrei Fokine; Geng Meng; Woong-Hee Shin; Feng Long; Richard J. Kuhn; Daisuke Kihara; Michael G. Rossmann


Archive | 2014

Fab Fragments of the 2H2 Antibody Obstruction of Dengue Virus Maturation by

Michael G. Rossmann; Moh Lan Yap; Pavel Plevka; Geng Meng; Lei Sun; Long Li; Janice G. Pennington; Ju Sheng

Collaboration


Dive into the Ju Sheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge