Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Carlos Acosta is active.

Publication


Featured researches published by Juan Carlos Acosta.


Cell | 2008

Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence

Juan Carlos Acosta; Ana O'Loghlen; Ana Banito; Maria V. Guijarro; Arnaud Augert; Selina Raguz; Marzia Fumagalli; Marco Da Costa; Celia Brown; Nikolay Popov; Yoshihiro Takatsu; Jonathan Melamed; Fabrizio d'Adda di Fagagna; David Bernard; Eva Hernando; Jesús Gil

Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.


Genes & Development | 2009

Senescence impairs successful reprogramming to pluripotent stem cells

Ana Banito; Sheikh Tamir Rashid; Juan Carlos Acosta; Si De Li; Carlos Filipe Pereira; Imbisaat Geti; Sandra Pinho; José C.R. Silva; Véronique Azuara; Martin J. Walsh; Ludovic Vallier; Jesús Gil

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.


Nature Cell Biology | 2013

A complex secretory program orchestrated by the inflammasome controls paracrine senescence

Juan Carlos Acosta; Ana Banito; Torsten Wuestefeld; Athena Georgilis; Peggy Janich; Jennifer P. Morton; Dimitris Athineos; Tae-Won Kang; Felix Lasitschka; Mindaugas Andrulis; Gloria Pascual; Kelly J. Morris; Sadaf Khan; Hong Jin; Gopuraja Dharmalingam; Ambrosius P. Snijders; Thomas J. Carroll; David Capper; Catrin Pritchard; Gareth J. Inman; Thomas Longerich; Owen J. Sansom; Lars Zender; Jesús Gil

Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.


Genes & Development | 2009

Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS

Marta Barradas; Emma Anderton; Juan Carlos Acosta; SiDe Li; Ana Banito; Marc Rodriguez-Niedenführ; Goedele N. Maertens; Michaela S. Banck; Ming-Ming Zhou; Martin J. Walsh; Gordon Peters; Jesús Gil

The INK4a/ARF tumor suppressor locus, a key executor of cellular senescence, is regulated by members of the Polycomb group (PcG) of transcriptional repressors. Here we show that signaling from oncogenic RAS overrides PcG-mediated repression of INK4a by activating the H3K27 demethylase JMJD3 and down-regulating the methyltransferase EZH2. In human fibroblasts, JMJD3 activates INK4a, but not ARF, and causes p16(INK4a)-dependent arrest. In mouse embryo fibroblasts, Jmjd3 activates both Ink4a and Arf and elicits a p53-dependent arrest, echoing the effects of RAS in this system. Our findings directly implicate JMJD3 in the regulation of INK4a/ARF during oncogene-induced senescence and suggest that JMJD3 has the capacity to act as a tumor suppressor.


Nature Cell Biology | 2015

mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype

Nicolás Herranz; Suchira Gallage; Massimiliano Mellone; Torsten Wuestefeld; Sabrina Klotz; Christopher J. Hanley; Selina Raguz; Juan Carlos Acosta; Andrew J. Innes; Ana Banito; Athena Georgilis; Alex Montoya; Katharina Wolter; Gopuraja Dharmalingam; Peter Faull; Thomas Carroll; Juan Pedro Martinez-Barbera; Pedro R. Cutillas; Florian Reisinger; Mathias Heikenwalder; Richard A. Miller; Dominic J. Withers; Lars Zender; Gareth J. Thomas; Jesús Gil

Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.


Trends in Cell Biology | 2012

Senescence: a new weapon for cancer therapy

Juan Carlos Acosta; Jesús Gil

Senescence is a stable cell cycle arrest that can be activated by oncogenic signaling and manifests with changes in cellular organization and gene expression, such as the induction of a complex secretome. Importantly, senescence limits tumor progression and determines the outcome of conventional anticancer therapies. In recent years, therapeutic approaches such as p53 reactivation, inhibition of c-MYC in addicted tumors or treatment with cyclin-dependent kinase (CDK) inhibitors have proven effective by invoking a senescence response. The possibility of using prosenescence therapies for cancer treatment has provoked considerable interest. We propose that the senescence secretome can be a source of novel targets for prosenescence therapies, as it has tumor suppressive actions. Overall, tailored prosenescence therapies have the potential to be used for treating cancer and other pathologies.


Cell Cycle | 2008

Control of senescence by CXCR2 and its ligands.

Juan Carlos Acosta; Ana O'Loghlen; Ana Banito; Selina Raguz; Jesús Gil

Senescence is an irreversible growth arrest with important physiological implications as it contributes to tumour suppression and may have a role in aging. During senescence, cells suffer profound phenotypic changes affecting amongst others cell morphology and chromatin structure. Senescent cells also undergo significant transcriptional changes, such as the increased production of a plethora of different secreted factors, which are the basis of the so-called senescence-associated secretory phenotype. While some of these factors have been previously shown to possess different pro-tumorigenic activities, we recently demonstrated that the secretion of CXCR2-binding chemokines (such as IL-8 or GROα) by senescent cells contribute to reinforce senescence via activation of the p53 pathway. Importantly, our data adds to that presented by several groups suggesting that also other factors secreted during senescence (such as PAI-1, IGFBP-7 or IL-6) contribute to the senescent response. Here, we discuss our findings in the context of the emerging role for secreted factors in regulating senescence through paracrine and/or autocrine mechanisms


Cancer Research | 2009

A Role for CXCR2 in Senescence, but What about in Cancer?

Juan Carlos Acosta; Jesús Gil

Senescence is an irreversible arrest triggered by stresses such as telomere shortening, DNA damage, or oncogenic signaling. Oncogene-induced senescence occurs in preneoplastic lesions, but it is absent from full-blown malignancies suggesting a tumor suppressor function. We recently found that depletion of the receptor CXCR2 [which binds to chemokines such as interleukin (IL)-8 or GROalpha] delays both replicative senescence and impairs the senescence response to oncogenic signals. Our findings suggest that signaling by IL-8 and GROalpha might limit tumor growth by reinforcing senescence early in tumorigenesis. The challenge remains in how to integrate this with the well-known tumor promoting effects of IL-8 and GROalpha.


Oncogene | 2005

Inhibitory effect of c-Myc on p53-induced apoptosis in leukemia cells. Microarray analysis reveals defective induction of p53 target genes and upregulation of chaperone genes

Eva Ceballos; María J. Muñoz-Alonso; Bernd Berwanger; Juan Carlos Acosta; Rafael Hernández; Michael Krause; Oliver Hartmann; Martin Eilers; Javier León

We have previously demonstrated that c-Myc impairs p53-mediated apoptosis in K562 human leukemia cells, which lack ARF. To investigate the mechanisms by which c-Myc protects from p53-mediated apoptosis, we used K562 cells that conditionally express c-Myc and harbor a temperature-sensitive allele of p53. Gene expression profiles of cells expressing wild-type conformation p53 in the presence of either uninduced or induced c-Myc were analysed by cDNA microarrays. The results show that multiple p53 target genes are downregulated when c-Myc is present, including p21WAF1, MDM2, PERP, NOXA, GADD45, DDB2, PIR121 and p53R2. Also, a number of genes that are upregulated by c-Myc in cells expressing wild-type conformation p53 encode chaperones related to cell death protection as HSP105, HSP90 and HSP27. Both downregulation of p53 target genes and upregulation of chaperones could explain the inhibition of apoptosis observed in K562 cells with ectopic c-Myc. Myc-mediated impairment of p53 transactivation was not restricted to K562 cells, but it was reproduced in a panel of human cancer cell lines derived from different tissues. Our data suggest that elevated levels of Myc counteract p53 activity in human tumor cells that lack ARF. This mechanism could contribute to explain the c-Myc deregulation frequently found in cancer.


Molecular Cancer Research | 2011

MYC in Chronic Myeloid Leukemia: Induction of Aberrant DNA Synthesis and Association with Poor Response to Imatinib

Marta Albajar; M. Teresa Gomez-Casares; Javier Llorca; Isaso Mauleon; José P. Vaqué; Juan Carlos Acosta; Arancha Bermudez; Nicholas J. Donato; M. Dolores Delgado; Javier León

Untreated chronic myeloid leukemia (CML) progresses from chronic phase to blastic crisis (BC). Increased genomic instability, deregulated proliferation, and loss of differentiation appear associated to BC, but the molecular alterations underlying the progression of CML are poorly characterized. MYC oncogene is frequently deregulated in human cancer, often associated with tumor progression. Genomic instability and induction of aberrant DNA replication are described as effects of MYC. In this report, we studied MYC activities in CML cell lines with conditional MYC expression with and without exposure to imatinib, the front-line drug in CML therapy. In cells with conditional MYC expression, MYC did not rescue the proliferation arrest mediated by imatinib but provoked aberrant DNA synthesis and accumulation of cells with 4C content. We studied MYC mRNA expression in 66 CML patients at different phases of the disease, and we found that MYC expression was higher in CML patients at diagnosis than control bone marrows or in patients responding to imatinib. Further, high MYC levels at diagnosis correlated with a poor response to imatinib. MYC expression did not directly correlate with BCR-ABL levels in patients treated with imatinib. Overall our study suggests that, as in other tumor models, MYC-induced aberrant DNA synthesis in CML cells is consistent with MYC overexpression in untreated CML patients and nonresponding patients and supports a role for MYC in CML progression, possibly through promotion of genomic instability. Mol Cancer Res; 9(5); 564–76. ©2011 AACR.

Collaboration


Dive into the Juan Carlos Acosta's collaboration.

Top Co-Authors

Avatar

Jesús Gil

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Ana Banito

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Javier León

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Selina Raguz

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Lars Zender

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge