Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan T. Borda is active.

Publication


Featured researches published by Juan T. Borda.


PLOS ONE | 2012

Persistence of Borrelia burgdorferi in Rhesus Macaques following Antibiotic Treatment of Disseminated Infection

Monica E. Embers; Stephen W. Barthold; Juan T. Borda; Lisa C. Bowers; Lara A. Doyle; Emir Hodzic; Mary B. Jacobs; Nicole R. Hasenkampf; Dale S. Martin; Sukanya Narasimhan; Kathrine Phillippi-Falkenstein; Jeanette E. Purcell; Marion S. Ratterree; Mario T. Philipp

The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4–6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment.


Blood | 2009

The level of monocyte turnover predicts disease progression in the macaque model of AIDS

Atsuhiko Hasegawa; Huining Liu; Binhua Ling; Juan T. Borda; Xavier Alvarez; Chie Sugimoto; Heather Vinet-Oliphant; Woong-Ki Kim; Kenneth C. Williams; Ruy M. Ribeiro; Andrew A. Lackner; Ronald S. Veazey; Marcelo J. Kuroda

It is widely accepted that destruction of CD4(+) T cells and viral load are the primary markers for immunodeficiency in HIV-1-infected humans and in simian immunodeficiency virus (SIV)-infected macaques. However, monocyte/macrophages are also important targets of HIV/SIV infection and a critical link between innate and adaptive immunity. We therefore examined whether changes in cells of the monocyte/macrophage lineage could be linked to the pathogenesis of AIDS in the rhesus macaque model. Here, we show that massive turnover of peripheral monocytes associated with death of tissue macrophages correlates with AIDS progression in macaques. More importantly, the level of monocyte turnover was not linked to the CD4(+) T-cell count and was a better predictive marker for AIDS progression than was viral load or lymphocyte activation. Our results show the importance of monocyte/macrophages in the pathogenesis of AIDS and suggest the dynamic changes of the monocyte/macrophages as a new marker for AIDS progression.


Infection and Immunity | 2003

Infectious Agent and Immune Response Characteristics of Chronic Enterocolitis in Captive Rhesus Macaques

Karol Sestak; Christopher K. Merritt; Juan T. Borda; Elizabeth Saylor; Shelle R. Schwamberger; Frank B. Cogswell; Elizabeth S. Didier; Peter J. Didier; Gail Plauche; Rudolf P. Bohm; Pyone P. Aye; Pavel Alexa; Richard L. Ward; Andrew A. Lackner

ABSTRACT Chronic enterocolitis is the leading cause of morbidity in colonies of captive rhesus macaques (Macaca mulatta). This studys aim was to identify the common enteric pathogens frequently associated with chronic enterocolitis in normal, immunocompetent rhesus monkeys and to elucidate the influence of this clinical syndrome on the host immune system. We analyzed the fecal specimens from 100 rhesus macaques with or without clinical symptoms of chronic diarrhea. Retrospective analysis revealed an increased incidence of Campylobacter spp. (Campylobacter coli and Campylobacter jejuni), Shigella flexneri, Yersinia enterocolitica, adenovirus, and Strongyloides fulleborni in samples collected from animals with chronic diarrhea (P < 0.05). The presence of additional enteric pathogens, such as Escherichia coli, carrying the eaeA intimin or Stx2c Shiga toxin virulence genes, Balantidium coli, Giardia lamblia, Enterocytozoon bieneusi, and Trichuris trichiura was found in all animals regardless of whether diarrhea was present. In addition, the upregulation of interleukin-1α (IL-1α), IL-3, and tumor necrosis factor alpha cytokine genes, accompanied by an increased presence of activated (CD4+ CD69+) T lymphocytes was found in gut-associated lymphoid tissues collected from animals with chronic enterocolitis and diarrhea in comparison with clinically healthy controls (P < 0.05). These data indicate that chronic enterocolitis and diarrhea are associated, in part, with a variety of enteric pathogens and highlight the importance of defining the microbiological status of nonhuman primates used for infectious disease studies. The data also suggest that chronic colitis in rhesus macaques may have potential as a model of inflammatory bowel disease in humans.


American Journal of Pathology | 2008

CD163, a Marker of Perivascular Macrophages, Is Up-Regulated by Microglia in Simian Immunodeficiency Virus Encephalitis after Haptoglobin-Hemoglobin Complex Stimulation and Is Suggestive of Breakdown of the Blood-Brain Barrier

Juan T. Borda; Xavier Alvarez; Mahesh Mohan; Atsuhiko Hasegawa; Andrea L. F. Bernardino; Sherrie Jean; Pyone P. Aye; Andrew A. Lackner

Macrophages and microglia are the major cell types infected by human immunodeficiency virus and simian immunodeficiency virus (SIV) in the central nervous system. Microglia are likely infected in vivo, but evidence of widespread productive infection (ie, presence of viral RNA and protein) is lacking. This conclusion is controversial because, unlike lymphocytes, macrophages and microglia cannot be discreetly immunophenotyped. Of particular interest in the search for additional monocyte/macrophage-lineage cell markers is CD163; this receptor for haptoglobin-hemoglobin (Hp-Hb) complex, which forms in plasma following erythrolysis, is expressed exclusively on cells of monocyte/macrophage lineage. We examined CD163 expression in vitro and in vivo by multiple techniques and at varying times after SIV infection in macaques with or without encephalitis. In normal and acutely SIV-infected animals, and in SIV-infected animals without encephalitis, CD163 expression was detected in cells of monocyte/macrophage lineage, including perivascular macrophages, but not in parenchymal microglia. However, in chronically infected animals with encephalitis, CD163 expression was detected in activated microglia surrounding SIV encephalitis lesions in the presence of Hp-Hb complex, suggesting leakage of the blood-brain barrier. CD163 expression was also induced on microglia in vitro after stimulation with Hp-Hb complex. We conclude that CD163 is a selective marker of perivascular macrophages in normal macaques and during the early phases of SIV infection; however, later in infection in animals with encephalitis, CD163 is also expressed by microglia, which are probably activated as a result of vascular compromise.


American Journal of Pathology | 2008

Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

Geeta Ramesh; Juan T. Borda; Jason Dufour; Deepak Kaushal; Ramesh Ramamoorthy; Andrew A. Lackner; Mario T. Philipp

Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis.


PLOS ONE | 2008

A Non-Human Primate Model for Gluten Sensitivity

Michael T. Bethune; Juan T. Borda; Erin P. Ribka; Michael-Xun Liu; Kathrine Phillippi-Falkenstein; Ronald J. Jandacek; Gaby G. M. Doxiadis; Gary M. Gray; Chaitan Khosla; Karol Sestak

Background and Aims Gluten sensitivity is widespread among humans. For example, in celiac disease patients, an inflammatory response to dietary gluten leads to enteropathy, malabsorption, circulating antibodies against gluten and transglutaminase 2, and clinical symptoms such as diarrhea. There is a growing need in fundamental and translational research for animal models that exhibit aspects of human gluten sensitivity. Methods Using ELISA-based antibody assays, we screened a population of captive rhesus macaques with chronic diarrhea of non-infectious origin to estimate the incidence of gluten sensitivity. A selected animal with elevated anti-gliadin antibodies and a matched control were extensively studied through alternating periods of gluten-free diet and gluten challenge. Blinded clinical and histological evaluations were conducted to seek evidence for gluten sensitivity. Results When fed with a gluten-containing diet, gluten-sensitive macaques showed signs and symptoms of celiac disease including chronic diarrhea, malabsorptive steatorrhea, intestinal lesions and anti-gliadin antibodies. A gluten-free diet reversed these clinical, histological and serological features, while reintroduction of dietary gluten caused rapid relapse. Conclusions Gluten-sensitive rhesus macaques may be an attractive resource for investigating both the pathogenesis and the treatment of celiac disease.


Journal of Neuroinflammation | 2009

Possible role of glial cells in the onset and progression of Lyme neuroborreliosis

Geeta Ramesh; Juan T. Borda; Amy Gill; Erin P. Ribka; Lisa A. Morici; Peter Mottram; Dale S. Martin; Mary B. Jacobs; Peter J. Didier; Mario T. Philipp

BackgroundLyme neuroborreliosis (LNB) may present as meningitis, cranial neuropathy, acute radiculoneuropathy or, rarely, as encephalomyelitis. We hypothesized that glia, upon exposure to Borrelia burgdorferi, the Lyme disease agent, produce inflammatory mediators that promote the acute cellular infiltration of early LNB. This inflammatory context could potentiate glial and neuronal apoptosis.MethodsWe inoculated live B. burgdorferi into the cisterna magna of rhesus macaques and examined the inflammatory changes induced in the central nervous system (CNS), and dorsal root nerves and ganglia (DRG).ResultsELISA of the cerebrospinal fluid (CSF) showed elevated IL-6, IL-8, CCL2, and CXCL13 as early as one week post-inoculation, accompanied by primarily lymphocytic and monocytic pleocytosis. In contrast, onset of the acquired immune response, evidenced by anti-B. burgdorferi C6 serum antibodies, was first detectable after 3 weeks post-inoculation. CSF cell pellets and CNS tissues were culture-positive for B. burgdorferi. Histopathology revealed signs of acute LNB: severe multifocal leptomeningitis, radiculitis, and DRG inflammatory lesions. Immunofluorescence staining and confocal microscopy detected B. burgdorferi antigen in the CNS and DRG. IL-6 was observed in astrocytes and neurons in the spinal cord, and in neurons in the DRG of infected animals. CCL2 and CXCL13 were found in microglia as well as in endothelial cells, macrophages and T cells. Importantly, the DRG of infected animals showed significant satellite cell and neuronal apoptosis.ConclusionOur results support the notion that innate responses of glia to B. burgdorferi initiate/mediate the inflammation seen in acute LNB, and show that neuronal apoptosis occurs in this context.


American Journal of Pathology | 2004

Cell Tropism of Simian Immunodeficiency Virus in Culture Is Not Predictive of in Vivo Tropism or Pathogenesis

Juan T. Borda; Xavier Alvarez; Ivanela Kondova; Pyone P. Aye; Meredith A. Simon; Ronald C. Desrosiers; Andrew A. Lackner

SIVmac239/316 is a molecular clone derived from SIVmac239 that differs from the parental virus by nine amino acids in env. This virus, unlike the parental SIVmac239, is able to replicate well in alveolar macrophages in culture. We have not however, observed macrophage-associated inflammatory disease in any animal infected with SIVmac239/316. Therefore, we sought to examine the cell tropism of this virus in vivo in multiple tissues using in situ hybridization combined with immunohistochemistry and multilabel confocal microscopy for viral nucleic acid and multiple cell-type-specific markers for macrophages and T lymphocytes. Tissues examined included brain, heart, lung, lymph nodes, spleen, thymus, and small and large intestine. Matched tissues from macaques infected with the parental SIVmac239 and uninfected macaques were also examined. Many infected cells were detected in the tissues of animals infected with SIVmac239 and SIVmac239/316 although there appeared to be fewer positive cells in animals infected with SIVmac239/316. Surprisingly, in light of the cell culture observations, nearly every simian immunodeficiency virus-infected cell in animals inoculated with SIVmac239/316 was a T lymphocyte rather than a macrophage. This was true both during early infection (first 2 months) and in terminal disease. In contrast, as previously described, SIVmac239 was found in both T cells and macrophages in tissues as early as 21 days after infection. These studies indicate that during both acute and chronic SIVmac239/316 infection T lymphocytes rather than macrophages are the principal targets in vivo. These data combined with the absence of macrophage-associated lesions in SIVmac239/316-infected animals indicate that in vitro cell tropism is not predictive of in vivo tropism or disease pathogenesis.


American Journal of Pathology | 2008

Clinical and immunopathologic alterations in rhesus macaques affected with globoid cell leukodystrophy.

Juan T. Borda; Xavier Alvarez; Mahesh Mohan; Marion S. Ratterree; Kathrine Phillippi-Falkenstein; Andrew A. Lackner; Bruce A. Bunnell

Globoid cell leukodystrophy, or Krabbes disease, is a severe disorder of the central and peripheral nervous system caused by the absence of galactocerebrosidase (GALC) activity. Herein, we describe the clinical, neuropathological, histochemical, and immunohistological features observed in rhesus macaques affected with Krabbes disease. Clinical signs included pronounced muscle tremors of head and limbs, difficulty ambulating, ataxia, hypermetria, proprioceptive deficits, and respiratory abnormalities. Histopathologically, all animals presented with evidence of demyelination in the peripheral and central nervous systems and accumulation of mononuclear and multinuclear globoid cells in the cerebral and cerebellar white matter associated with severe gliosis. Using immunohistochemistry and multi-label confocal microscopy, it was determined that globoid cells were CD68+, HAM56+, LN5+, CD163+, IBA-1+, and Glut-5+, suggesting that both peripheral blood-derived monocytes/macrophages and resident parenchymal microglia gave rise to globoid cells. Interestingly, many of the globoid cells and parenchymal microglia with a more ameboid morphology expressed HLA-DR, indicating immune activation. Increased expression of iNOS, TNF-alpha, and IL-1 beta were observed in the affected white matter, colocalizing with globoid cells, activated microglia, and astrocytes. Cytokine mRNA levels revealed markedly increased gene expression of CCL2 in the brain of affected macaques. CCL2-expressing cells were detected throughout the affected white matter, colocalizing with GFAP+ cells and astrocytes. Collectively, these data suggest that dysregulation of monocyte/macrophage/microglia and up-regulation of certain cytokines may contribute to the pathogenesis of Krabbes disease.


Journal of Clinical Microbiology | 2005

Characterization of Cytolethal Distending Toxin of Campylobacter Species Isolated from Captive Macaque Monkeys

Rohana P. Dassanayake; You Zhou; Susanne Hinkley; Cynthia J. Stryker; Gail Plauche; Juan T. Borda; Karol Sestak; Gerald E. Duhamel

ABSTRACT An association between certain Campylobacter species and enterocolitis in humans and nonhuman primates is well established, but the association between cytolethal distending toxin and disease is incompletely understood. The purpose of the present study was to examine Campylobacter species isolated from captive conventionally raised macaque monkeys for the presence of the cdtB gene and for cytolethal distending toxin activity. The identity of each isolate was confirmed on the basis of phenotypic and genotypic analyses. The presence of cytolethal distending toxin was confirmed on the basis of characteristic morphological changes in HeLa cells incubated with filter-sterilized whole-cell lysates of reference and monkey Campylobacter isolates and examinations by light microscopy, confocal microscopy, and flow cytometry. Although cdtB gene sequences were found in both Campylobacter jejuni and Campylobacter coli, the production of cytolethal distending toxin correlated positively (P < 0.0001) only with C. jejuni. We concluded that cytolethal distending toxin activity is a characteristic of C. jejuni. Our C. jejuni cdtB gene-specific PCR assay might be of assistance for differentiating toxigenic C. jejuni from C. coli in clinical laboratories.

Collaboration


Dive into the Juan T. Borda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge