Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith A. Hoyland is active.

Publication


Featured researches published by Judith A. Hoyland.


Arthritis Research & Therapy | 2005

The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

Christine L. Le Maitre; A. J. Freemont; Judith A. Hoyland

In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family.This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6).In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration.


The Journal of Pathology | 2004

Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc

Christine L. Le Maitre; A. J. Freemont; Judith A. Hoyland

The histological and biochemical changes that occur in the extracellular matrix of the intervertebral disc (IVD) during ageing and degeneration have been investigated extensively. However, the mechanisms behind these changes are not fully understood. A number of studies have suggested the involvement of matrix metalloproteinases (MMPs) and ADAMTS in IVD degeneration, but few have localized the site of production of these enzymes to the cells of the degenerate disc. This study uses immunohistochemical techniques to localize and quantify the production of degrading enzymes (MMPs 1, 3, and 13, and ADAMTS 4) and their inhibitors (TIMPS 1, 2, and 3) within non‐degenerate and degenerate discs of varying severity of degeneration. In all discs investigated, the cells that produced the enzymes and their inhibitors were the chondrocyte‐like cells of the nucleus pulposus and inner annulus fibrosus (AF), with little immunopositivity in the outer AF. Non‐degenerate discs showed low numbers of cells expressing the degradative enzymes MMP 1 and ADAMTS 4, suggesting a role for these enzymes in normal homeostasis. No MMP 3 or MMP 13 immunopositivity was observed in non‐degenerate discs. In degenerate discs, the number of cells immunopositive for MMPs 1, 3, 13 and ADAMTS 4 increased with the severity of degeneration. This increase in degrading enzymes was also accompanied by increases in the number of cells immunopositive for TIMPs 1 and 2 but not TIMP 3. This study highlights that although the expression of a number of MMPs increases with degeneration, this is accompanied by an increase in their inhibitors. However, the increase in the number of cells immunoreactive for ADAMTS 4 with increasing degeneration was not paralleled by a rise in its inhibitor TIMP 3. This finding indicates that the aggrecanases, rather then the MMPs, are a possible therapeutic target for the inhibition of disc degeneration. Copyright


Arthritis Research & Therapy | 2007

Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

Christine L. Le Maitre; Judith A. Hoyland; A. J. Freemont

Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the pathogenesis of IVD degeneration, IL-1 may have a more significant role than TNFα, and thus may be a better target for therapeutic intervention.


The Journal of Pathology | 2002

Nerve growth factor expression and innervation of the painful intervertebral disc

A. J. Freemont; A. Watkins; C L Le Maitre; Pauline Baird; Maria Jeziorska; M. T. N. Knight; E. R. S. Ross; J. P. O'Brien; Judith A. Hoyland

Following a previous description of nociceptive nerve fibre growth into usually aneural inner parts of painful intervertebral disc (IVD), this study has investigated whether nociceptive nerve ingrowth into painful IVD is stimulated by local production of neurotrophins. Immunohistochemistry and in situ hybridization have been used to investigate expression of the candidate neurotrophin, nerve growth factor (NGF), and its high‐ and low‐affinity receptors trk‐A and p75, respectively, in painful IVD excised for the management of low back pain. IVD from patients with back pain were of two types: those that when examined by discography reproduced the patient symptoms (pain level IVD) and those that did not (non‐pain level IVD). Microvascular blood vessels accompanied nerve fibres growing into pain level IVD and these expressed NGF. The adjacent nerves expressed the high‐affinity NGF receptor trk‐A. These vessels entered the normally avascular IVD through the discal end plates. NGF expression was not identified in non‐pain level or control IVD. Some non‐pain level IVD had vessels within them, which entered through the annulus fibrosus. These did not express NGF nor did nerves accompany them. These findings show that nociceptive nerve ingrowth into painful IVD is causally linked with NGF production by blood vessels growing into the IVD, from adjacent vertebral bodies. Copyright


Biochemical Society Transactions | 2007

Matrix synthesis and degradation in human intervertebral disc degeneration.

C L Le Maitre; A Pockert; David J. Buttle; A. J. Freemont; Judith A. Hoyland

Degeneration of the intervertebral disc has been implicated in chronic low back pain. Type II collagen and proteoglycan (predominantly aggrecan) content is crucial to proper disc function, particularly in the nucleus pulposus. In degeneration, synthesis of matrix molecules changes, leading to an increase in the synthesis of collagens type I and III and a decreased production of aggrecan. Linked to this is an increased expression of matrix-degrading molecules including MMPs (matrix metalloproteinases) and the aggrecanases, ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) 1, 4, 5, 9 and 15, all of which are produced by native disc cells. Importantly, we have found that there is a net increase in these molecules, over their natural inhibitors [TIMP-1 (tissue inhibitor of metalloproteinases-1), 2 and 3], suggesting a deregulation of the normal homoeostatic mechanism. Growth factors and cytokines [particularly TNFalpha (tumour necrosis factor alpha) and IL-1 (interleukin 1)] have been implicated in the regulation of this catabolic process. Our work has shown that in degenerate discs there is an increase in IL-1, but no corresponding increase in the inhibitor IL-1 receptor antagonist. Furthermore, treatment of human disc cells with IL-1 leads to a decrease in matrix gene expression and increased MMP and ADAMTS expression. Inhibition of IL-1 would therefore be an important therapeutic target for preventing/reversing disc degeneration.


Stem Cells | 2006

Intervertebral Disc Cell–Mediated Mesenchymal Stem Cell Differentiation

Stephen M. Richardson; Rachael Walker; Siân Parker; Nick Rhodes; John A. Hunt; A. J. Freemont; Judith A. Hoyland

Low back pain is one of the largest health problems in the Western world today, and intervertebral disc degeneration has been identified as a main cause. Currently, treatments are symptomatic, but cell‐based tissue engineering methods are realistic alternatives for tissue regeneration. However, the major problem for these strategies is the generation of a suitable population of cells. Adult bone marrow–derived mesenchymal stem cells (MSCs) are undifferentiated, multipotent cells that have the ability to differentiate into a number of cell types, including the chondrocyte‐like cells found within the nucleus pulposus (NP) of the intervertebral disc; however, no method exists to differentiate these cells in an accessible monolayer environment. We have conducted coculture experiments to determine whether cells from the human NP can initiate the differentiation of human MSCs with or without cell–cell contact. Fluorescent labeling of the stem cell population and high‐speed cell sorting after coculture with cell–cell contact allowed examination of individual cell populations. Real‐time quantitative polymerase chain reaction showed significant increases in NP marker genes in stem cells when cells were cocultured with contact for 7 days, and this change was regulated by cell ratio. No significant change in NP marker gene expression in either NP cells or stem cells was observed when cells were cultured without contact, regardless of cell ratio. Thus, we have shown that human NP and MSC coculture with contact is a viable method for generating a large population of differentiated cells that could be used in cell‐based tissue engineering therapies for regeneration of the degenerate intervertebral disc.


Arthritis Research & Therapy | 2007

Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration

Christine L. Le Maitre; A. J. Freemont; Judith A. Hoyland

Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A(increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4Aand matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration.


Rheumatology | 2008

Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc

Judith A. Hoyland; C L Le Maitre; A. J. Freemont

OBJECTIVE To establish if IL-1 or TNF regulates matrix degradation in the non-degenerate or degenerate intervertebral disc (IVD). METHODS In situ zymography (ISZ) has been used to investigate the role of IL-1 and TNF in the matrix degradation characterizing symptomatic IVD degeneration. ISZ employed three substrates (gelatin, collagen II, casein) and four different challenges, IL-1beta, IL-1 receptor antagonist (IL-1Ra), TNF-alpha and anti-TNF. RESULTS We have shown for the first time that whilst IL-1beta will stimulate and IL-1 receptor antagonist will inhibit matrix degradation in intact human IVD tissue, neither TNF-alpha nor anti-TNF have any measurable effect on degradation of these matrices. CONCLUSION This study has addressed a current area of controversy in IVD biology, namely, whether either IL-1 or TNF or both are involved in driving matrix degradation. Our data indicate that IL-1 is a key cytokine mediating matrix degradation in the IVD and therefore a therapeutic target.


The Journal of Pathology | 2002

Current understanding of cellular and molecular events in intervertebral disc degeneration: Implications for therapy

A. J. Freemont; A. Watkins; C L Le Maitre; Maria Jeziorska; Judith A. Hoyland

Until recently, material removed from the intervertebral disc (IVD) at surgery consisted either of ‘loose bodies’ from the centre of the IVD or discal tissue displaced (prolapsed) into the intervertebral root or spinal canals. This material is best regarded as a by‐product of disc degeneration and therefore not representative of the disease process itself. Recent advances in surgical techniques, particularly anterior fusion, in which large segments of the anterior part of the IVD are excised with the anatomical relationships between different components intact, have generated material that can be investigated with modern molecular and cell biological techniques. This is an important area of study because degeneration of the lumbar IVDs is associated, perhaps causally, with low back pain, one of the most common and debilitating conditions in the West. ‘Degeneration’ carries implications of inevitable progression of wear‐and‐tear associated conditions. Modern research on human IVD tissue has shown that this is far from the case and that disruption of the micro‐anatomy described as degeneration is an active process, regulated by locally produced molecules. The exciting consequence of this observation is the possibility of being able to inhibit or even reverse the processes of degeneration using targeted therapy. Copyright


Arthritis & Rheumatism | 2009

Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration

Aneta J. Pockert; Stephen M. Richardson; Christine L. Le Maitre; Malcolm Lyon; Jonathan A. Deakin; David J. Buttle; A. J. Freemont; Judith A. Hoyland

OBJECTIVE Intervertebral disc degeneration is linked to loss of extracellular matrix (ECM), particularly the early loss of aggrecan. A group of metalloproteinases called aggrecanases are important mediators of aggrecan turnover. The present study was undertaken to investigate the expression of the recognized aggrecanases and their inhibitor, tissue inhibitor of metalloproteinases 3 (TIMP-3), in human intervertebral disc tissue. METHODS Twenty-four nondegenerated and 30 degenerated disc samples were analyzed for absolute messenger RNA (mRNA) copy number of ADAMTS 1, 4, 5, 8, 9, and 15 and TIMP-3 by real-time reverse transcription-polymerase chain reaction. Thirty-six formalin-fixed embedded intervertebral disc samples of varying grades of degeneration were used for immunohistochemical analyses. In addition, samples from 8 subjects were analyzed for the presence of matrix metalloproteinase (MMP)- and aggrecanase-generated aggrecan products. RESULTS Messenger RNA for all the aggrecanases other than ADAMTS-8 was identified in intervertebral disc tissue, as was mRNA for TIMP-3. Levels of mRNA expression of ADAMTS 1, 4, 5, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. All these aggrecanases and TIMP-3 were also detected immunohistochemically in disc tissue, and numbers of nucleus pulposus cells staining positive for ADAMTS 4, 5, 9, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. Aggrecan breakdown products generated by MMP and aggrecanase activities were also detected in intervertebral disc tissue. CONCLUSION The aggrecanases ADAMTS 1, 4, 5, 9, and 15 may contribute to the changes occurring in the ECM during intervertebral disc degeneration. Targeting these enzymes may be a possible future therapeutic strategy for the prevention of intervertebral disc degeneration and its associated morbidity.

Collaboration


Dive into the Judith A. Hoyland's collaboration.

Top Co-Authors

Avatar

A. J. Freemont

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Byers

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pauline Baird

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn A. Bondy

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge