Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen M. Richardson is active.

Publication


Featured researches published by Stephen M. Richardson.


Stem Cells | 2006

Intervertebral Disc Cell–Mediated Mesenchymal Stem Cell Differentiation

Stephen M. Richardson; Rachael Walker; Siân Parker; Nick Rhodes; John A. Hunt; A. J. Freemont; Judith A. Hoyland

Low back pain is one of the largest health problems in the Western world today, and intervertebral disc degeneration has been identified as a main cause. Currently, treatments are symptomatic, but cell‐based tissue engineering methods are realistic alternatives for tissue regeneration. However, the major problem for these strategies is the generation of a suitable population of cells. Adult bone marrow–derived mesenchymal stem cells (MSCs) are undifferentiated, multipotent cells that have the ability to differentiate into a number of cell types, including the chondrocyte‐like cells found within the nucleus pulposus (NP) of the intervertebral disc; however, no method exists to differentiate these cells in an accessible monolayer environment. We have conducted coculture experiments to determine whether cells from the human NP can initiate the differentiation of human MSCs with or without cell–cell contact. Fluorescent labeling of the stem cell population and high‐speed cell sorting after coculture with cell–cell contact allowed examination of individual cell populations. Real‐time quantitative polymerase chain reaction showed significant increases in NP marker genes in stem cells when cells were cocultured with contact for 7 days, and this change was regulated by cell ratio. No significant change in NP marker gene expression in either NP cells or stem cells was observed when cells were cultured without contact, regardless of cell ratio. Thus, we have shown that human NP and MSC coculture with contact is a viable method for generating a large population of differentiated cells that could be used in cell‐based tissue engineering therapies for regeneration of the degenerate intervertebral disc.


Acta Biomaterialia | 2009

Introducing chemical functionality in Fmoc-peptide gels for cell culture

Vineetha Jayawarna; Stephen M. Richardson; Andrew R. Hirst; Nigel Hodson; Alberto Saiani; Julie E. Gough; Rein V. Ulijn

Aromatic short peptide derivatives, i.e. peptides modified with aromatic groups such as 9-fluorenylmethoxycarbonyl (Fmoc), can self-assemble into self-supporting hydrogels. These hydrogels have some similarities to extracellular matrices due to their high hydration, relative stiffness and nanofibrous architecture. We previously demonstrated that Fmoc-diphenylalanine (Fmoc-F(2)) provides a suitable matrix for two-dimensional (2D) or three-dimensional (3D) culture of primary bovine chondrocytes. In this paper we investigate whether the introduction of chemical functionality, such as NH(2), COOH or OH, enhances compatibility with different cell types. A series of hydrogel compositions consisting of combinations of Fmoc-F(2) and n-protected Fmoc amino acids, lysine (K, with side chain R=(CH(2))(4)NH(2)), glutamic acid (D, with side chain R=CH(2)COOH), and serine (S, with side chain R=CH(2)OH) were studied. All compositions produced fibrous scaffolds with fibre diameters in the range of 32-65 nm as assessed by cryo-scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy analysis suggested that peptide segments adopt a predominantly antiparallel beta-sheet conformation. Oscillatory rheology results show that all four hydrogels have mechanical profiles of soft viscoelastic materials with elastic moduli dependent on the chemical composition, ranging from 502 Pa (Fmoc-F(2)/D) to 21.2 KPa (Fmoc-F(2)). All gels supported the viability of bovine chondrocytes as assessed by a live-dead staining assay. Fmoc-F(2)/S and Fmoc-F(2)/D hydrogels in addition supported viability for human dermal fibroblasts (HDF) while Fmoc-F(2)/S hydrogel was the only gel type that supported viability for all three cell types tested. Fmoc-F(2)/S was therefore investigated further by studying cell proliferation, cytoskeletal organization and histological analysis in 2D culture. In addition, the Fmoc-F(2)/S gel was shown to support retention of cell morphology in 3D culture of bovine chondrocytes. These results demonstrate that introduction of chemical functionality into Fmoc-peptide scaffolds may provide gels with tunable chemical and mechanical properties for in vitro cell culture.


Arthritis & Rheumatism | 2009

Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration

Aneta J. Pockert; Stephen M. Richardson; Christine L. Le Maitre; Malcolm Lyon; Jonathan A. Deakin; David J. Buttle; A. J. Freemont; Judith A. Hoyland

OBJECTIVE Intervertebral disc degeneration is linked to loss of extracellular matrix (ECM), particularly the early loss of aggrecan. A group of metalloproteinases called aggrecanases are important mediators of aggrecan turnover. The present study was undertaken to investigate the expression of the recognized aggrecanases and their inhibitor, tissue inhibitor of metalloproteinases 3 (TIMP-3), in human intervertebral disc tissue. METHODS Twenty-four nondegenerated and 30 degenerated disc samples were analyzed for absolute messenger RNA (mRNA) copy number of ADAMTS 1, 4, 5, 8, 9, and 15 and TIMP-3 by real-time reverse transcription-polymerase chain reaction. Thirty-six formalin-fixed embedded intervertebral disc samples of varying grades of degeneration were used for immunohistochemical analyses. In addition, samples from 8 subjects were analyzed for the presence of matrix metalloproteinase (MMP)- and aggrecanase-generated aggrecan products. RESULTS Messenger RNA for all the aggrecanases other than ADAMTS-8 was identified in intervertebral disc tissue, as was mRNA for TIMP-3. Levels of mRNA expression of ADAMTS 1, 4, 5, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. All these aggrecanases and TIMP-3 were also detected immunohistochemically in disc tissue, and numbers of nucleus pulposus cells staining positive for ADAMTS 4, 5, 9, and 15 were significantly increased in degenerated tissue compared with nondegenerated tissue. Aggrecan breakdown products generated by MMP and aggrecanase activities were also detected in intervertebral disc tissue. CONCLUSION The aggrecanases ADAMTS 1, 4, 5, 9, and 15 may contribute to the changes occurring in the ECM during intervertebral disc degeneration. Targeting these enzymes may be a possible future therapeutic strategy for the prevention of intervertebral disc degeneration and its associated morbidity.


Journal of Cellular Physiology | 2010

Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering

Stephen M. Richardson; Judith A. Hoyland; Reza Mobasheri; Constanze Csaki; Mehdi Shakibaei; Ali Mobasheri

Defects of load‐bearing connective tissues such as articular cartilage and intervertebral disc (IVD) can result from trauma, degenerative, endocrine, or age‐related disease. Current surgical and pharmacological options for the treatment of arthritic rheumatic conditions in the joints and spine are ineffective. Cell‐based surgical therapies such as autologous chondrocyte transplantation (ACT) have been in clinical use for cartilage repair for over a decade but this approach has shown mixed results. This review focuses on the potential of mesenchymal stem cells (MSCs) as an alternative to cells derived from patient tissues in autologous transplantation and tissue engineering. Here we discuss the prospects of using MSCs in regenerative medicine and summarize the advantages and disadvantages of these cells in articular cartilage and IVD tissue engineering. We discuss the conceptual and practical difficulties associated with differentiating and pre‐conditioning MSCs for subsequent survival in a physiologically harsh extracellular matrix, an environment that will be highly hypoxic, acidic, and nutrient deprived. Implanted MSCs will be exposed to traumatic physical loads and high levels of locally produced inflammatory mediators and catabolic cytokines. We also explore the potential of culture models of MSCs, fully differentiated cells and co‐cultures as “proof of principle” ethically acceptable “3Rs” models for engineering articular cartilage and IVD in vitro for the purpose of replacing the use of animals in arthritis research. J. Cell. Physiol. 222:23–32, 2010.


Arthritis Research & Therapy | 2010

Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes

Ben M. Minogue; Stephen M. Richardson; Leo Zeef; A. J. Freemont; Judith A. Hoyland

IntroductionNucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.MethodsMicroarrays were conducted on bovine AC, AF and NP cells, using Affymetrix Genechip® Bovine Genome Arrays. Differential expression levels for a number of genes were confirmed by quantitative real time polymerase chain reaction (qRT-PCR) on bovine, AC, AF and NP cells, as well as separated bovine NP and notochordal (NC) cells. Expression of these novel markers were further tested on normal human AC, AF and NP cells, and degenerate AF and NP cells.ResultsMicroarray comparisons between NP/AC&AF and NP/AC identified 34 NP-specific and 49 IVD-specific genes respectively that were differentially expressed ≥100 fold. A subset of these were verified by qRT-PCR and shown to be expressed in bovine NC cells. Eleven genes (SNAP25, KRT8, KRT18, KRT19, CDH2, IBSP, VCAN, TNMD, BASP1, FOXF1 & FBLN1) were also differentially expressed in normal human NP cells, although to a lesser degree. Four genes (SNAP25, KRT8, KRT18 and CDH2) were significantly decreased in degenerate human NP cells, while three genes (VCAN, TNMD and BASP1) were significantly increased in degenerate human AF cells. The IVD negative marker FBLN1 was significantly increased in both degenerate human NP and AF cells.ConclusionsThis study has identified a number of novel genes that characterise the bovine and human NP and IVD transcriptional profiles, and allows for discrimination between AC, AF and NP cells. Furthermore, the similarity in expression profiles of the separated NP and NC cell populations suggests that these two cell types may be derived from a common lineage. Although interspecies variation, together with changes with IVD degeneration were noted, use of this gene expression signature will benefit tissue engineering studies where defining the NP phenotype is paramount.


Arthritis & Rheumatism | 2010

Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation

Ben M. Minogue; Stephen M. Richardson; Leo Zeef; A. J. Freemont; Judith A. Hoyland

OBJECTIVE Development of stem cell therapies for regenerating the nucleus pulposus (NP) are hindered by the lack of specific markers by which to distinguish NP cells from articular chondrocytes (ACs). The purpose of this study was to define the phenotype profile of human NP cells using gene expression profiling and to assess whether the identified markers could distinguish mesenchymal stem cell (MSC) differentiation to a correct NP cell phenotype. METHODS Affymetrix MicroArray analyses were conducted on human NP cells and ACs, and differential expression levels for several positive (NP) and negative (AC) marker genes were validated by real-time quantitative polymerase chain reaction (PCR) analysis. Novel marker gene and protein expression was also assessed in human bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) following differentiation in type I collagen gels. RESULTS Analysis identified 12 NP-positive and 36-negative (AC) marker genes that were differentially expressed ≥20-fold, and for a subset of them (NP-positive genes PAX1, FOXF1, HBB, CA12, and OVOS2; AC-positive genes GDF10, CYTL1, IBSP, and FBLN1), differential expression was confirmed by real-time quantitative PCR. Differentiated BM-MSCs and AD-MSCs demonstrated significant increases in the novel NP markers PAX1 and FOXF1. AD-MSCs lacked expression of the AC markers IBSP and FBLN1, whereas BM-MSCs lacked expression of the AC marker IBSP but expressed FBLN1. CONCLUSION This study is the first to use gene expression profiling to identify the human NP cell phenotype. Importantly, these markers can be used to determine the in vitro differentiation of MSCs to an NP-like, rather than an AC-like, phenotype. Interestingly, these results suggest that AD-MSCs may be a more appropriate cell type than BM-MSCs for use in engineering intervertebral disc tissue.


Regenerative Medicine | 2010

Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype

Sandra Strassburg; Stephen M. Richardson; A. J. Freemont; Judith A. Hoyland

AIMS While mesenchymal stem cell (MSC)-based therapies for repair of the degenerate intervertebral disc (IVD) have been proposed, the interaction of MSCs with cells of the degenerate IVD has not been fully investigated. Therefore, it is unclear whether implanted MSCs would differentiate into nucleus pulposus (NP) cells and/or stimulate endogenous NP cells. Here, we investigate the differences in interaction between human MSCs and NP cells from both nondegenerate and degenerate discs during in vitro co-culture with direct cell-cell contact. MATERIALS & METHODS Human bone marrow-derived MSCs (labeled with CFDA) were co-cultured with direct cell-cell contact in monolayer with NP cells obtained from nondegenerate or degenerate human NP tissue from lumbar IVDs at 50:50 ratios for 7 days. Differentiation of MSCs and changes of matrix-associated genes in NP cells were assessed by quantitative real-time PCR. RESULTS MSCs differentiated to an NP-like phenotype following direct co-culture with both nondegenerate and degenerate NP, as shown by a significant upregulation of SOX9, type VI collagen, aggrecan and versican gene expression together with a simultaneous upregulation of CDMP-1, TGF-β1, IGF-1 and CTGF. Direct co-culture of normal NP cells with MSCs had no effect on the phenotype of normal NP cells, while co-culture with degenerate NP cells resulted in enhanced matrix gene expression in degenerate NP cells, accompanied by increases in both TGF-β and CDMP-1 gene expression. CONCLUSION Importantly for MSC-based therapies for repair of the degenerate IVD, these data suggest that cellular interactions between MSCs and degenerate NP cells may both stimulate MSC differentiation to an NP-like phenotype and also stimulate the endogenous NP cell population to regain a nondegenerate phenotype and consequently enhance matrix synthesis for self-repair.


Journal of the American Chemical Society | 2015

Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation.

Vinh X. Truong; Matthew P. Ablett; Stephen M. Richardson; Judith A. Hoyland; Andrew P. Dove

The use of tough hydrogels as biomaterials is limited as a consequence of time-consuming fabrication techniques, toxic starting materials, and large strain hysteresis under deformation. Herein, we report the simultaneous application of nucleophilic thiol-yne and inverse electron-demand Diels-Alder additions to independently create two interpenetrating networks in a simple one-step procedure. The resultant hydrogels display compressive stresses of 14-15 MPa at 98% compression without fracture or hysteresis upon repeated load. The hydrogel networks can be spatially and temporally postfunctionalized via radical thiylation and/or inverse electron-demand Diels-Alder addition to residual functional groups within the network. Furthermore, gelation occurs rapidly under physiological conditions, enabling encapsulation of human cells.


Methods | 2016

Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration

Stephen M. Richardson; Gauthaman Kalamegam; Peter Natesan Pushparaj; Csaba Matta; Adnan Memic; Ali Khademhosseini; Reza Mobasheri; Fabian L. Poletti; Judith A. Hoyland; Ali Mobasheri

Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Whartons jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.


Arthritis Research & Therapy | 2009

Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc

Stephen M. Richardson; Paul M. Doyle; Ben M. Minogue; Kanna K. Gnanalingham; Judith A. Hoyland

IntroductionMatrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP).MethodsHuman NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P.ResultsMMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples.ConclusionsMMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.

Collaboration


Dive into the Stephen M. Richardson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Freemont

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

K Moley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn A. Bondy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.C. Rosa

University of Coimbra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge