Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamish T. J. Gilbert is active.

Publication


Featured researches published by Hamish T. J. Gilbert.


Current Pain and Headache Reports | 2008

Stem Cell Regeneration of Degenerated Intervertebral Discs: Current Status (Update)

Hamish T. J. Gilbert; Judith A. Hoyland; Stephen M. Richardson

Low back pain, strongly associated with intervertebral disc (IVD) degeneration, affects a large proportion of the population and has major social and economic costs. Current treatments remain inadequate, targeting the symptoms without addressing the underlying cause. As such, efforts are being directed towards development of therapies aimed at alleviating pain through the restoration of IVD function. The potential of cell-based therapies for the treatment of IVD degeneration are being actively explored, with an emphasis on cell/biomaterial tissue engineering. Adult mesenchymal stem cells, capable of differentiating down the discogenic lineage, have shown promise as a suitable cell source for IVD tissue engineering. However, a number of factors, (discussed in this review), remain to be addressed, including development of a differentiation protocol to produce the correct cell phenotype, identification of suitable biomaterials for cell delivery/implantation, and ensuring cell survival and correct function upon implantation into the degenerate IVD.


Biomaterials Science | 2014

In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering

Vinh X. Truong; Matthew P. Ablett; Hamish T. J. Gilbert; James Bowen; Stephen M. Richardson; Judith A. Hoyland; Andrew P. Dove

A water-soluble azide-functionalised chitosan was crosslinked with propiolic acid ester-functional poly(ethylene glycol) using copper-free click chemistry. The resultant hydrogel materials were formed within 5-60 min at 37 °C and resulted in mechanically robust materials with tuneable properties such as swelling, mechanical strength and degradation. Importantly, the hydrogels supported mesenchymal stem cell attachment and proliferation and were also non-toxic to encapsulated cells. As such these studies indicate that the hydrogels have potential to be used as injectable biomaterials for tissue engineering.


Arthritis & Rheumatism | 2010

The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration.

Hamish T. J. Gilbert; Judith A. Hoyland; Sarah J. Millward-Sadler

OBJECTIVE Mechanical loads are important for homeostasis of the intervertebral disc (IVD) cell matrix, with physiologic and nonphysiologic loads leading to matrix anabolism and catabolism, respectively. Previous investigations into the effects of load on disc cells have predominantly used animal models, with the limited number of human studies focusing primarily on nucleus pulposus cells. The aim of this study was to examine the effect of cyclic tensile strain (CTS) on human anulus fibrosus (AF) cells to ascertain whether the response was frequency-dependent and to compare AF cells derived from nondegenerated and degenerated tissue samples. METHODS AF cells were isolated from nondegenerated and degenerated human IVDs, expanded in monolayer, and cyclically strained for 20 minutes, applying 10% strain at a frequency of 1.0 Hz or 0.33 Hz with the use of a Flexcell strain device. Total RNA was extracted from the cells at baseline (control) and at 1, 3, and 24 hours following application of CTS. Real-time quantitative polymerase chain reaction was used to analyze gene expression of matrix proteins (aggrecan, type I collagen, and type II collagen) and enzymes (matrix metalloproteinases [MMPs] 3, 9, 13, and ADAMTS-4). RESULTS The expression of catabolic genes (MMP-3 and ADAMTS-4) in AF cells derived from nondegenerated tissue decreased in response to 1.0 Hz of CTS, whereas changing the frequency to 0.33 Hz resulted in a shift toward matrix catabolism. Application of 1.0 Hz of CTS reduced anabolic gene expression (aggrecan and type I collagen) in AF cells derived from degenerated tissue, with 0.33 Hz of CTS resulting in increased catabolic gene expression. CONCLUSION The response of human AF cells to CTS is frequency-dependent and is altered by degeneration.


Biomacromolecules | 2013

Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly(ethylene glycol) acrylate-based system.

Simon J. Leigh; Hamish T. J. Gilbert; Ian A. Barker; Jan M. Becker; Stephen M. Richardson; Judith A. Hoyland; James A. Covington; Andrew P. Dove

A novel method for the production of inhibitor- and solvent-free resins suitable for three-dimensional (3D) microstereolithography is reported. Using an exemplar poly(ethylene glycol)-based resin, the control of features in the X, Y, and Z planes is demonstrated such that complex structures can be manufactured. Human mesenchymal stem cells cultured on the manufactured scaffolds remained viable during the 7 day assessment period, with proliferation rates comparable to those observed on tissue culture polystyrene. These data suggest that this novel, yet simple, method is suitable for the production of 3D scaffolds for tissue engineering and regenerative medicine applications.


PLOS ONE | 2013

Integrin – Dependent Mechanotransduction in Mechanically Stimulated Human Annulus Fibrosus Cells: Evidence for an Alternative Mechanotransduction Pathway Operating with Degeneration

Hamish T. J. Gilbert; Navraj S Nagra; A. J. Freemont; Sarah J. Millward-Sadler; Judith A. Hoyland

Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD – peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS – dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS – induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells.


Biomaterials Science | 2014

A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering

Ian A. Barker; Matthew P. Ablett; Hamish T. J. Gilbert; Simon J. Leigh; James A. Covington; Judith A. Hoyland; Stephen M. Richardson; Andrew P. Dove

A new class of degradable aliphatic poly(carbonate) resins for use in microstereolithographic process is described. Using a biologically inert photo-inhibiting dye, exemplar 3-dimensional structures were produced using thiol-ene chemistry via microstereolithography. Fabricated constructs demonstrated good biological compatibility with cells and had tensile properties that render them suitable for use as tissue engineering scaffolds.


Scientific Reports | 2016

Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target

Hamish T. J. Gilbert; Nathan W. Hodson; Pauline Baird; Stephen M. Richardson; Judith A. Hoyland

The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.


bioRxiv | 2018

Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading

Hamish T. J. Gilbert; Venkatesh Mallikarjun; Oana Dobre; Mark Jackson; Robert Pedley; Andrew P. Gilmore; Stephen M. Richardson; Joe Swift

Our current understanding of cellular mechano-signalling is based on static models, which do not replicate the dynamics of living tissues. Here, we examined the time-dependent response of primary human mesenchymal stem cells (hMSCs) to cyclic tensile strain (CTS). At low-intensity strain (1 hour, 4% CTS at 1 Hz) morphological changes mimicked responses to increased substrate stiffness. As the strain regime was intensified (frequency increased to 5 Hz), we characterised rapid establishment of a broad, structured and reversible protein-level response, even as transcription was apparently downregulated. Protein abundance was quantified coincident with changes to protein conformation and post transcriptional modification. Furthermore, we characterised changes within the linker of nucleo- and cytoskeleton (LINC) complex of proteins that bridges the nuclear envelope, and specifically to levels of SUN domain-containing protein 2 (SUN2). The result of this regulation was to decouple mechano-transmission between the cytoskeleton and the nucleus, thus conferring protection to chromatin.


Scientific Reports | 2018

An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness

Asier Galarza Torre; Joshua E. Shaw; Amber Wood; Hamish T. J. Gilbert; Oana Dobre; Paul G. Genever; Keith Brennan; Stephen M. Richardson; Joe Swift

The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates’ mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells ‘feel’ substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine.


JOR Spine | 2018

Degenerate intervertebral disc-like pH induces a catabolic mechanoresponse in human nucleus pulposus cells

Nathan W. Hodson; Sonal Patel; Stephen M. Richardson; Judith A. Hoyland; Hamish T. J. Gilbert

Mechanical stimulation is known to influence intervertebral disc (IVD) cell behavior and function, but the effect on disc cells is routinely considered in isolation from other microenvironmental factors. Acidic pH has been shown to be a prominent and detrimental microenvironmental factor present in degenerate IVDs, but its influence on the human disc cell mechanoresponse has never been studied. We investigated the response of agarose‐encapsulated human nucleus pulposus (NP) cells to 0.004 MPa, 1.0 Hz and 1 hour of compression (Flexcell FX4000 Compression System) under pH conditions representative of nondegenerate (pH 7.1) and degenerate (pH 6.5) IVDs. Cell viability, extracellular matrix production, and expression of anabolic/anti‐catabolic and catabolic genes were assessed. We report that preculture of NP cells in agarose gels was required in order for cells to be mechanoresponsive, and this correlated with increased type VI collagen, α5β1 integrin, and fibronectin expression. Furthermore, the matrix homeostatic response observed at pH 7.1 (representative of nondegenerate IVDs; increased aggrecan [AGC], tissue inhibitor of metalloproteinases‐1 [TIMP1], matrix metalloproteinase‐3 [MMP3], a disintegrin and metalloproteinase with thrombospondin motif‐5 [ADAMTS5] gene expression) was RGD‐integrin dependent, whereas only MMP3 remained mechanoresponsive at pH 6.5, and this was independent of RGD‐integrins. Our findings suggest differential mechanotransduction pathways operating for specific genes, with RGD‐integrin dependent AGC expression, but not RGD‐independent MMP3 expression, inhibited at pH representative of degenerate IVDs (pH 6.5), which could contribute to the catabolic phenotype observed during IVD degeneration.

Collaboration


Dive into the Hamish T. J. Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Swift

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Dove

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Freemont

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge