Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judith Burstin is active.

Publication


Featured researches published by Judith Burstin.


Plant Physiology | 2004

Proteome Reference Maps of Vegetative Tissues in Pea. An Investigation of Nitrogen Mobilization from Leaves during Seed Filling

Séverine Schiltz; Karine Gallardo; Myriam Huart; Luc Negroni; Nicolas Sommerer; Judith Burstin

A proteomic approach was used to analyze protein changes during nitrogen mobilization (N mobilization) from leaves to filling seeds in pea (Pisum sativum). First, proteome reference maps were established for mature leaves and stems. They displayed around 190 Coomassie Blue-stained spots with pIs from 4 to 7. A total of 130 spots were identified by mass spectrometry as corresponding to 80 different proteins implicated in a variety of cellular functions. Although the leaf proteome map contained more abundant spots, corresponding to proteins involved in energy/carbon metabolism, than the stem map, their comparison revealed a highly similar protein profile. Second, the leaf proteome map was used to analyze quantitative variations in leaf proteins during N mobilization. Forty percent of the spots showed significant changes in their relative abundance in the total protein extract. The results confirmed the importance of Rubisco as a source of mobilizable nitrogen, and suggested that in pea leaves the rate of degradation of Rubisco may vary throughout N mobilization. Correlated with the loss of Rubisco was an increase in relative abundance of chloroplastic protease regulatory subunits. Concomitantly, the relative abundance of some proteins related to the photosynthetic apparatus (Rubisco activase, Rubisco-binding proteins) and of several chaperones increased. A role for these proteins in the maintenance of a Rubisco activation state and in the PSII repair during the intense proteolytic activity within the chloroplasts was proposed. Finally, two 14-3-3-like proteins, with a potential regulatory role, displayed differential expression patterns during the massive remobilization of nitrogen.


Genome Biology | 2008

UTILLdb, a Pisum sativum in silico forward and reverse genetics tool

Marion Dalmais; Julien Schmidt; Christine Le Signor; Françoise Moussy; Judith Burstin; Vincent Savois; Grégoire Aubert; Véronique Brunaud; Yannick de Oliveira; Cécile Guichard; Richard Thompson; Abdelhafid Bendahmane

The systematic characterization of gene functions in species recalcitrant to Agrobacterium-based transformation, like Pisum sativum, remains a challenge. To develop a high throughput forward and reverse genetics tool in pea, we have constructed a reference ethylmethane sulfonate mutant population and developed a database, UTILLdb, that contains phenotypic as well as sequence information on mutant genes. UTILLdb can be searched online for TILLING alleles, through the BLAST tool, or for phenotypic information about mutants by keywords.


BMC Genomics | 2010

Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea.

Chrystel Deulvot; Hélène Charrel; Amandine Marty; Françoise Jacquin; Cécile Donnadieu; Isabelle Lejeune-Hénaut; Judith Burstin; Grégoire Aubert

BackgroundSingle Nucleotide Polymorphisms (SNPs) can be used as genetic markers for applications such as genetic diversity studies or genetic mapping. New technologies now allow genotyping hundreds to thousands of SNPs in a single reaction.In order to evaluate the potential of these technologies in pea, we selected a custom 384-SNP set using SNPs discovered in Pisum through the resequencing of gene fragments in different genotypes and by compiling genomic sequence data present in databases. We then designed an Illumina GoldenGate assay to genotype both a Pisum germplasm collection and a genetic mapping population with the SNP set.ResultsWe obtained clear allelic data for more than 92% of the SNPs (356 out of 384). Interestingly, the technique was successful for all the genotypes present in the germplasm collection, including those from species or subspecies different from the P. sativum ssp sativum used to generate sequences. By genotyping the mapping population with the SNP set, we obtained a genetic map and map positions for 37 new gene markers.ConclusionOur results show that the Illumina GoldenGate assay can be used successfully for high-throughput SNP genotyping of diverse germplasm in pea. This genotyping approach will simplify genotyping procedures for association mapping or diversity studies purposes and open new perspectives in legume genomics.


Theoretical and Applied Genetics | 2004

Genetic diversity within Pisum sativum using protein- and PCR-based markers

Alain Baranger; Grégoire Aubert; G. Arnau; A. L. Lainé; G. Deniot; J. Potier; C. Weinachter; Isabelle Lejeune-Hénaut; J. Lallemand; Judith Burstin

A collection of 148 Pisum accessions, mostly from Western Europe, and including both primitive germplasm and cultivated types, was structured using 121 protein- and PCR-based markers. This molecular marker-based classification allowed us to trace back major lineages of pea breeding in Western Europe over the last decades, and to follow the main breeding objectives: increase of seed weight, introduction of the afila foliage type and white flowers, and improvement of frost tolerance for winter-sown peas. The classification was largely consistent with the available pedigree data, and clearly resolved the different main varietal types according to their end-uses (fodder, food and feed peas) from exotic types and wild forms. Fodder types were further separated into two sub-groups. Feed peas, corresponding to either spring-sown or winter-sown types, were also separated, with two apparently different gene pools for winter-sown peas. The garden pea group was the most difficult to structure, probably due to a continuum in breeding of feed peas from garden types. The classification also stressed the paradox between the narrowness of the genetic basis of recent cultivars and the very large diversity available within P. sativum. A sub-collection of 43 accessions representing 96% of the whole allelic variability is proposed as a starting point for the construction of a core collection.


Plant Physiology | 2005

Dynamics of Exogenous Nitrogen Partitioning and Nitrogen Remobilization from Vegetative Organs in Pea Revealed by 15N in Vivo Labeling throughout Seed Filling

Séverine Schiltz; Nathalie Munier-Jolain; Christian Jeudy; Judith Burstin; Christophe Salon

The fluxes of (1) exogenous nitrogen (N) assimilation and (2) remobilization of endogenous N from vegetative plant compartments were measured by 15N labeling during the seed-filling period in pea (Pisum sativum L. cv Caméor), to better understand the mechanism of N remobilization. While the majority (86%) of exogenous N was allocated to the vegetative organs before the beginning of seed filling, this fraction decreased to 45% at the onset of seed filling, the remainder being directed to seeds. Nitrogen remobilization from vegetative parts contributed to 71% of the total N in mature seeds borne on the first two nodes (first stratum). The contribution of remobilized N to total seed N varied, with the highest proportion at the beginning of filling; it was independent of the developmental stage of each stratum of seeds, suggesting that remobilized N forms a unique pool, managed at the whole-plant level and supplied to all filling seeds whatever their position on the plant. Once seed filling starts, N is remobilized from all vegetative organs: 30% of the total N accumulated in seeds was remobilized from leaves, 20% from pod walls, 11% from roots, and 10% from stems. The rate of N remobilization was maximal when seeds of all the different strata were filling, consistent with regulation according to the N demand of seeds. At later stages of seed filling, the rate of remobilization decreases and may become controlled by the amount of residual N in vegetative tissues.


G3: Genes, Genomes, Genetics | 2011

Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L.

Amandine Bordat; Vincent Savois; Marie Georgette Nicolas; Jérôme Salse; Aurélie Chauveau; Michael Bourgeois; Jean Potier; Hervé Houtin; Céline Rond; Florent Murat; Pascal Marget; Grégoire Aubert; Judith Burstin

To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.


Plant Physiology | 2007

Developmental Genes Have Pleiotropic Effects on Plant Morphology and Source Capacity, Eventually Impacting on Seed Protein Content and Productivity in Pea

Judith Burstin; Pascal Marget; Myriam Huart; Annie Moessner; Brigitte Mangin; Christiane Duchene; Bruno Desprez; Nathalie Munier-Jolain; Gérard Duc

Increasing pea (Pisum sativum) seed nutritional value and particularly seed protein content, while maintaining yield, is an important challenge for further development of this crop. Seed protein content and yield are complex and unstable traits, integrating all the processes occurring during the plant life cycle. During filling, seeds are the main sink to which assimilates are preferentially allocated at the expense of vegetative organs. Nitrogen seed demand is satisfied partly by nitrogen acquired by the roots, but also by nitrogen remobilized from vegetative organs. In this study, we evaluated the respective roles of nitrogen source capacity and sink strength in the genetic variability of seed protein content and yield. We showed in eight genotypes of diverse origins that both the maximal rate of nitrogen accumulation in the seeds and nitrogen source capacity varied among genotypes. Then, to identify the genetic factors responsible for seed protein content and yield variation, we searched for quantitative trait loci (QTL) for seed traits and for indicators of sink strength and source nitrogen capacity. We detected 261 QTL across five environments for all traits measured. Most QTL for seed and plant traits mapped in clusters, raising the possibility of common underlying processes and candidate genes. In most environments, the genes Le and Afila, which control internode length and the switch between leaflets and tendrils, respectively, determined plant nitrogen status. Depending on the environment, these genes were linked to QTL of seed protein content and yield, suggesting that source-sink adjustments depend on growing conditions.


Theoretical and Applied Genetics | 2008

The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L

Isabelle Lejeune-Hénaut; Eric Hanocq; L. Béthencourt; Véronique Fontaine; Bruno Delbreil; J. Morin; A. Petit; Rosemonde Devaux; M. Boilleau; J.-J. Stempniak; M. Thomas; A.-L. Lainé; Fabrice Foucher; Alain Baranger; Judith Burstin; Catherine Rameau; Catherine Giauffret

An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection.


Comptes Rendus Biologies | 2008

Reserve accumulation in legume seeds

Karine Gallardo; Richard Thompson; Judith Burstin

The accumulation of seed reserves is the result of distinct processes occurring in parallel in the main seed compartments of either maternal (seed coats) or zygotic (embryo, endosperm) origin. With the development of legume genomic resources, recent advances have been made toward understanding the metabolic control of seed filling and the regulatory network underlying reserve accumulation. Genetic variability for seed composition has been studied along with the environmental factors influencing reserve accumulation. Nutrient availability and sink strength were both found to be limiting for reserve accumulation. Genes and/or QTL controlling seed protein content and sulfur-amino acid levels have been identified. These new findings will support our attempts to engineer legume seed composition for added end user value.


Proteomics | 2009

Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

Michael Bourgeois; Françoise Jacquin; Vincent Savois; Nicolas Sommerer; Valérie Labas; Céline Henry; Judith Burstin

Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post‐translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

Collaboration


Dive into the Judith Burstin's collaboration.

Top Co-Authors

Avatar

Grégoire Aubert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Françoise Jacquin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Gérard Duc

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Lejeune-Hénaut

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Baranger

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascal Marget

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Le Signor

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie-Laure Pilet-Nayel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge