Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Thompson is active.

Publication


Featured researches published by Richard Thompson.


Molecular & Cellular Proteomics | 2007

A Combined Proteome and Transcriptome Analysis of Developing Medicago truncatula Seeds Evidence for Metabolic Specialization of Maternal and Filial Tissues

Karine Gallardo; Christian Firnhaber; Hélène Zuber; Delphine Héricher; Maya Belghazi; Céline Henry; Helge Küster; Richard Thompson

A comparative study of proteome and transcriptome changes during Medicago truncatula (cultivar Jemalong) seed development has been carried out. Transcript and protein profiles were parallel across the time course for 50% of the comparisons made, but divergent patterns were also observed, indicative of post-transcriptional events. These data, combined with the analysis of transcript and protein distribution in the isolated seed coat, endosperm, and embryo, demonstrated the major contribution made to the embryo by the surrounding tissues. First, a remarkable compartmentalization of enzymes involved in methionine biosynthesis between the seed tissues was revealed that may regulate the availability of sulfur-containing amino acids for embryo protein synthesis during seed filling. This intertissue compartmentalization, which was also apparent for enzymes of sulfur assimilation, is relevant to strategies for modifying the nutritional value of legume seeds. Second, decreasing levels during seed filling of seed coat and endosperm metabolic enzymes, including essential steps in Met metabolism, are indicative of a metabolic shift from a highly active to a quiescent state as the embryo assimilates nutrients. Third, a concomitant persistence of several proteases in seed coat and endosperm highlighted the importance of proteolysis in these tissues as a supplementary source of amino acids for protein synthesis in the embryo. Finally, the data revealed the sites of expression within the seed of a large number of transporters implied in nutrient import and intraseed translocations. Several of these, including a sulfate transporter, were preferentially expressed in seeds compared with other plant organs. These findings provide new directions for genetic improvement of grain legumes.


Plant Science | 2001

Development and functions of seed transfer cells

Richard Thompson; Gregorio Hueros; Heinz-Albert Becker; Monika Maitz

In secretion or absorption processes, solutes are transported across the plasmalemma between the symplastic and apoplastic compartments. For this purpose, certain plant cells have developed a specialised transfer cell morphology characterised by wall ingrowths, which amplify the associated plasmalemma surface area up to 20-fold. Detailed studies on the function and development of transfer cells in the context of seed filling have been carried out mainly in cereal endosperm, and for the cotyledon and seed coat cells of legumes. The major solutes transferred are amino acids, sucrose and monosaccharides. The contributions of recently identified symporter proteins to solute transfer are reviewed here, as is the role of apoplastic invertases in promoting solute assimilation. Expression of invertase and monosaccharide transporters early in both cereal and legume seed development orchestrates the distribution of free sugars which play an important role in regulating transfer cell function and determining final endosperm or embryo cell number. Transfer cell differentiation is subject to developmental control, and may also be modulated by sugar levels. The most abundant genes specifically expressed in the transfer layer of maize endosperm encode small antipathogenic proteins, pointing to a role for these cells in protecting the developing endosperm against pathogen ingress. The functional characterisation of the corresponding transfer layer-specific promoters has provided a tool for dissecting transfer cell functions. Transfer cells are highly polar in their organisation, the characteristic cell wall ingrowths developing on one face only. The presence of cytoskeletal components bordering wall ingrowths is documented, but their role in establishing transfer cell morphology remains to be established.


Molecular Genetics and Genomics | 1989

Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes

Vincent Colot; Dorothea Bartels; Richard Thompson; Richard B. Flavell

SummaryThe isolation and characterisation by DNA sequencing of a low molecular weight (LMW) glutenin gene from wheat is described. The deduced protein contains a signal peptide, a central repetitive region rich in proline and glutamine and N and C terminal non-repetitive domains, similar to other prolamins. A detailed comparison of the C terminal domain of 20 prolamin genes enabled us to divide them into 4 families. The LMW glutenin family is distinct from the α, β-and γ-gliadin families of wheat and is closest to the B hordein genes of barley. This and other comparisons were also used to assess the pattern of genetic variation among prolamin sequences and to provide a molecular basis for the interpretation of prolamin size polymorphism. The 5′ flanking fragment of the isolated gene was previously shown to direct endosperm-specific expression of a reporter gene in transgenic tobacco. Evidence is provided that the isolated gene is also active in wheat and its transcription initiation site was determined. Features of the gene which may be relevant to its activity are discussed.


Genome Biology | 2008

UTILLdb, a Pisum sativum in silico forward and reverse genetics tool

Marion Dalmais; Julien Schmidt; Christine Le Signor; Françoise Moussy; Judith Burstin; Vincent Savois; Grégoire Aubert; Véronique Brunaud; Yannick de Oliveira; Cécile Guichard; Richard Thompson; Abdelhafid Bendahmane

The systematic characterization of gene functions in species recalcitrant to Agrobacterium-based transformation, like Pisum sativum, remains a challenge. To develop a high throughput forward and reverse genetics tool in pea, we have constructed a reference ethylmethane sulfonate mutant population and developed a database, UTILLdb, that contains phenotypic as well as sequence information on mutant genes. UTILLdb can be searched online for TILLING alleles, through the BLAST tool, or for phenotypic information about mutants by keywords.


The Plant Cell | 2009

A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress

Laura de Lorenzo; Francisco Merchan; Philippe Laporte; Richard Thompson; Jonathan Clarke; Carolina Sousa; Martin Crespi

In plants, a diverse group of cell surface receptor-like protein kinases (RLKs) plays a fundamental role in sensing external signals to regulate gene expression. Roots explore the soil environment to optimize their growth via complex signaling cascades, mainly analyzed in Arabidopsis thaliana. However, legume roots have significant physiological differences, notably their capacity to establish symbiotic interactions. These major agricultural crops are affected by environmental stresses such as salinity. Here, we report the identification of a leucine-rich repeat RLK gene, Srlk, from the legume Medicago truncatula. Srlk is rapidly induced by salt stress in roots, and RNA interference (RNAi) assays specifically targeting Srlk yielded transgenic roots whose growth was less inhibited by the presence of salt in the medium. Promoter-β-glucuronidase fusions indicate that this gene is expressed in epidermal root tissues in response to salt stress. Two Srlk-TILLING mutants also failed to limit root growth in response to salt stress and accumulated fewer sodium ions than controls. Furthermore, early salt-regulated genes are downregulated in Srlk-RNAi roots and in the TILLING mutant lines when submitted to salt stress. We propose a role for Srlk in the regulation of the adaptation of M. truncatula roots to salt stress.


Plant Biotechnology Journal | 2009

Optimizing TILLING populations for reverse genetics in Medicago truncatula

Christine Le Signor; Vincent Savois; Grégoire Aubert; Jerome Verdier; Marie Georgette Nicolas; Gaelle Pagny; Françoise Moussy; Myriam Sanchez; Dave Baker; Jonathan Clarke; Richard Thompson

Medicago truncatula has been widely adopted as a model plant for crop legume species of the Vicieae. Despite the availability of transformation and regeneration protocols, there are currently limited tools available in this species for the systematic investigation of gene function. Within the framework of the European Grain Legumes Integrated Project (http://www.eugrainlegumes.org), chemical mutagenesis was applied to M. truncatula to create two mutant populations that were used to establish a TILLING (targeting induced local lesions in genomes) platform and a phenotypic database, allowing both reverse and forward genetics screens. Both populations had the same M2 line number, but differed in their M1 population size: population 1 was derived from a small M1 population (one-tenth the size of the M2 generation), whereas population 2 was generated by single seed descent and therefore has M1 and M2 generations of equal size. Fifty-six targets were screened, 10 on both populations, and 546 point mutations were identified. Population 2 had a mutation frequency of 1/485 kb, twice that of population 1. The strategy used to generate population 2 is more efficient than that used to generate population 1, with regard to mutagenesis density and mutation recovery. However, the design of population 1 allowed us to estimate the genetically effective cell number to be three in M. truncatula. Phenotyping data to help forward screenings are publicly available, as well as a web tool for ordering seeds at http://www.inra.fr/legumbase.


Plant and Cell Physiology | 2008

Transcriptional regulation of storage protein synthesis during dicotyledon seed filling

Jerome Verdier; Richard Thompson

Seeds represent a major source of nutrients for human and animal livestock diets. The nutritive value of seeds is largely due to storage products which accumulate during a key phase of seed development, seed filling. In recent years, our understanding of the mechanisms regulating seed filling has advanced significantly due to the diversity of experimental approaches used. This review summarizes recent findings related to transcription factors that regulate seed storage protein accumulation. A framework for the regulation of storage protein synthesis is established which incorporates the events before, during and after seed storage protein synthesis. The transcriptional control of storage protein synthesis is accompanied by physiological and environmental controls, notably through the action of plant hormones and other intermediary metabolites. Finally, recent post-genomics analyses on different model plants have established the existence of a conserved seed filling process involving the master regulators (LEC1, LEC2, ABI3 and FUS3) but also revealed certain differences in fine regulation between plant families.


Plant Science | 2013

The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

Mélanie Noguero; Rana M. Atif; Sergio J. Ochatt; Richard Thompson

The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.


Plant Molecular Biology | 1999

Evidence for factors regulating transfer cell-specific expression in maize endosperm.

Gregorio Hueros; Joaquín Royo; Monika Maitz; Francesco Salamini; Richard Thompson

In maize, a layer of basal endosperm cells adjacent to the pedicel is modified for a function in solute transfer. Three genes specifically expressed in this region, termed the basal endosperm transfer layer (BETL-2 to -4), were isolated by differential hybridization. BETL-2 to -4 are coordinately expressed in early and mid-term endosperm development, but are absent at later stages. BETL-2 to -4 coding sequences all predict small (<100 amino acids), secreted, cysteine-rich polypeptides which lack close relatives in current database accessions. BETL-3 and BETL-1 display some sequence similarities with each other and to plant defensins. BETL-2 to -4 promoter regions were isolated and compared, revealing the presence of a promoter-proximal microsatellite repeat as the most highly conserved sequence element in each sequence. Electrophoretic mobility shift assays (EMSA) showed that specific BETL-2 to -4 promoter fragments competed for binding to the same DNA-binding activity in nuclear extracts prepared from maize endosperm. Although BETL-2 to -4 are only expressed in basal endosperm cells, the DNA-binding activities detected were of two types: distal endosperm-specific, or present in both basal and distal endosperm extracts. On the basis of these findings, a model to account for the coordinate regulation of BETL genes in endosperm cells is proposed.


Plant Molecular Biology | 2008

Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling.

Jerome Verdier; Klementina Kakar; Karine Gallardo; Christine Le Signor; Grégoire Aubert; Armin Schlereth; Christopher D. Town; Michael K. Udvardi; Richard Thompson

Legume seeds represent a major source of proteins for human and livestock diets. The model legume Medicago truncatula is characterized by a process of seed development very similar to that of other legumes, involving the interplay of sets of transcription factors (TFs). Here, we report the first expression profiling of over 700xa0M. truncatula genes encoding putative TFs throughout seven stages of seed development, obtained using real-time quantitative RT-PCR. A total of 169 TFs were selected which were expressed at late embryogenesis, seed filling or desiccation. The site of expression within the seed was examined for 41 highly expressed transcription factors out of the 169. To identify possible target genes for these TFs, the data were combined with a microarray-derived transcriptome dataset. This study identified 17 TFs preferentially expressed in individual seed tissues and 135 corresponding co-expressed genes, including possible targets. Certain of the TFs co-expressed with storage protein mRNAs correspond to those already known to regulate seed storage protein synthesis in Arabidopsis, whereas the timing of expression of others may be more specifically related to the delayed expression of the legumin-class storage proteins observed in legumes.

Collaboration


Dive into the Richard Thompson's collaboration.

Top Co-Authors

Avatar

Karine Gallardo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Le Signor

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Abdelhafid Bendahmane

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Grégoire Aubert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hélène Zuber

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Judith Burstin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jerome Verdier

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mélanie Noguero

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Vanessa Vernoud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge