Judith Cossins
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Judith Cossins.
American Journal of Human Genetics | 2012
Katsiaryna Belaya; Sarah Finlayson; Clarke R. Slater; Judith Cossins; Wei Wei Liu; Susan Maxwell; Simon J. McGowan; Siarhei Maslau; Stephen R.F. Twigg; T. J. Walls; Samuel Ignacio Pascual; Jacqueline Palace; David Beeson
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.
Brain | 2013
Judith Cossins; Katsiaryna Belaya; Debbie Hicks; Mustafa A. Salih; Sarah Finlayson; Nicola Carboni; Wei Wei Liu; Susan Maxwell; Katarzyna Marta Zoltowska; Golara Torabi Farsani; Steven H. Laval; Mohammed zain Seidhamed; Peter Donnelly; David R. Bentley; Simon J. McGowan; Juliane S. Müller; Jacqueline Palace; Hanns Lochmüller; David Beeson
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.
PLOS ONE | 2013
Inga Koneczny; Judith Cossins; Patrick Waters; David Beeson; Angela Vincent
A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 MuSK antibodies will also contribute to the reduced AChR density and neuromuscular dysfunction in myasthenia patients with MuSK antibodies.
Annals of the New York Academy of Sciences | 2012
Judith Cossins; Katsiaryna Belaya; Katarzyna Marta Zoltowska; Inga Koneczny; Susan Maxwell; Leslie Jacobson; M I Leite; Patrick Waters; Angela Vincent; David Beeson
Around 80% of myasthenia gravis patients have antibodies against the acetylcholine receptor, and 0–60% of the remaining patients have antibodies against the muscle‐specific tyrosine kinase, MuSK. Another recently identified antigen is low‐density lipoprotein receptor‐related protein 4 (Lrp4). To improve the existing assays and widen the search for new antigenic targets, we have employed cell‐based assays in which candidate target proteins are expressed on the cell surface of transfected cells and probed with patient sera. These assays, combined with use of myotube cultures to explore the effects of the antibodies, enable us to begin to identify new antigenic targets and test antibody pathogenicity in vitro.
Journal of Anatomy | 2014
Inga Koneczny; Judith Cossins; Angela Vincent
MuSK myasthenia gravis is a rare, severe autoimmune disease of the neuromuscular junction, only identified in 2001, with unclear pathogenic mechanisms. In this review we describe the clinical aspects that distinguish MuSK MG from AChR MG, review what is known about the role of MuSK in the development and function of the neuromuscular junction, and discuss the data that address how the antibodies to MuSK lead to neuromuscular transmission failure.
Human Molecular Genetics | 2013
Katarzyna Marta Zoltowska; R. Webster; Sarah Finlayson; Susan Maxwell; Judith Cossins; Juliane S. Müller; Hanns Lochmüller; David Beeson
Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not β subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder.
Annals of the New York Academy of Sciences | 2012
Angela Vincent; Patrick Waters; M. Isabel Leite; Leslie Jacobson; Inga Koneczny; Judith Cossins; David Beeson
We have established cell‐based assays for the improved detection of acetylcholine receptor (AChR) and muscle‐specific kinase (MuSK) antibodies in myasthenia gravis. This approach has enabled us to demonstrate antibodies to “clustered” AChRs in patients who were previously AChR antibody negative and can also be used to distinguish between adult and fetal AChR antibodies in mothers of babies with arthrogryposis multiplex congenita. We summarize our recent evidence for the pathogenicity of MuSK and clustered AChR antibodies using in vivo models. Cell‐based assays are now also being used for the detection of other antibodies, such as those directed to components of the VGKC/CASPR2/LGI1 complex in Morvans syndrome, and to AQP4 antibodies in neuromyelitis optica; both of these diseases can be associated with MG and sometimes thymoma. The cell‐based method is time consuming but has many advantages and may provide a gold standard for the future in the detection of pathogenic autoantibodies in patients with immune‐mediated diseases.
Journal of Neurology, Neurosurgery, and Psychiatry | 2013
Sarah Finlayson; Jacqueline Palace; Katsiaryna Belaya; T. J. Walls; Fiona Norwood; G Burke; Janice L. Holton; Samuel Ignacio Pascual-Pascual; Judith Cossins; David Beeson
Background A newly defined congenital myasthenic syndrome (CMS) caused by DPAGT1 mutations has recently been reported. While many other CMS-associated proteins have discrete roles localised to the neuromuscular junction, DPAGT1 is ubiquitously expressed, modifying many proteins, and as such is an unexpected cause of isolated neuromuscular involvement. Methods We present detailed clinical characteristics of five patients with CMS caused by DPAGT1 mutations. Results Patients have prominent limb girdle weakness and minimal craniobulbar symptoms. Tubular aggregates on muscle biopsy are characteristic but may not be apparent on early biopsies. Typical myasthenic features such as pyridostigmine and 3, 4- diaminopyridine responsiveness, and decrement on repetitive nerve stimulation are present. Conclusions These patients mimic myopathic disorders and are likely to be under-diagnosed. The descriptions here should facilitate recognition of this disorder. In particular minimal craniobulbar involvement and tubular aggregates on muscle biopsy help to distinguish DPAGT1 CMS from the majority of other forms of CMS. Patients with DPAGT1 CMS share similar clinical features with patients who have CMS caused by mutations in GFPT1, another recently identified CMS subtype.
Annals of the New York Academy of Sciences | 2008
David Beeson; R. Webster; Judith Cossins; Daniel Lashley; Hayley Spearman; Susan Maxwell; Clarke R. Slater; John Newsom-Davis; Jacqueline Palace; Angela Vincent
The congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders affecting neuromuscular transmission. Underlying mutations have been identified in at least 11 different genes. The majority of CMS patients have disorders due to mutations in postsynaptic proteins. Initial studies focused on dysfunction of the acetylcholine receptor (AChR) itself as the major cause of CMS. However, it is becoming apparent that mutations of proteins involved in clustering the AChR and maintaining neuromuscular junction structure form important subgroups. Analysis of the mutations in the AChR‐clustering protein, rapsyn, show diverse causes for defective AChR localization and suggest that the common mutation rapsyn‐N88K results in AChR clusters that are less stable than those generated by wild‐type rapsyn. More recently, mutations in the newly identified endplate protein Dok‐7 have been shown to affect AChR clustering and the generation and maintenance of specialized structures at the endplate. Dok‐7 binds MuSK and many of the mutations of DOK7 impair the MuSK signaling pathway. Components of this pathway will provide attractive gene candidates for additional forms of CMS. The phenotypic characteristics of the different CMS in which muscle groups may be differentially affected not only provide clues for targeted genetic screening, but also pose further intriguing questions about underlying molecular mechanisms.
American Journal of Human Genetics | 2015
Clare V. Logan; Judith Cossins; Pedro M. Rodríguez Cruz; David A. Parry; Susan Maxwell; Pilar Martinez-Martinez; Joey Riepsaame; Zakia Abdelhamed; Alice V.R. Lake; Maria Moran; S. Robb; Gabriel Chow; C. Sewry; P.M. Hopkins; Eamonn Sheridan; Sandeep Jayawant; Jacqueline Palace; Colin A. Johnson; David Beeson
The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs∗71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals.