Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Patzig is active.

Publication


Featured researches published by Julia Patzig.


The Journal of Neuroscience | 2011

Quantitative and Integrative Proteome Analysis of Peripheral Nerve Myelin Identifies Novel Myelin Proteins and Candidate Neuropathy Loci

Julia Patzig; Olaf Jahn; Stefan Tenzer; Sven P. Wichert; Patricia de Monasterio-Schrader; Susanne Rosfa; Jörg Kuharev; Kuo Yan; Ingo Bormuth; Juliane Bremer; Adriano Aguzzi; Foteini Orfaniotou; Dörte Hesse; Markus H. Schwab; Wiebke Möbius; Klaus-Armin Nave; Hauke B. Werner

Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia–axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.


Neuron Glia Biology | 2008

Phylogeny of proteolipid proteins : divergence, constraints, and the evolution of novel functions in myelination and neuroprotection

Wiebke Möbius; Julia Patzig; Klaus-Armin Nave; Hauke B. Werner

The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.


Cellular and Molecular Life Sciences | 2012

Systematic approaches to central nervous system myelin

Patricia de Monasterio-Schrader; Olaf Jahn; Stefan Tenzer; Sven P. Wichert; Julia Patzig; Hauke B. Werner

Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of ‘omics’ approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the >1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause—when mutated in humans—hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia–axonal interactions, leukodystrophies, and demyelinating diseases.


Translational Psychiatry | 2013

A single gene defect causing claustrophobia

Ahmed El-Kordi; Anne Kästner; Sabrina Grube; Matthias Klugmann; Martin Begemann; Swetlana Sperling; Kurt Hammerschmidt; Ch. Hammer; Beata Stepniak; Julia Patzig; P de Monasterio-Schrader; Nicola Strenzke; Gabriele Flügge; Hauke B. Werner; R Pawlak; K-A Nave; Hannelore Ehrenreich

Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3′untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia.


The Journal of Neuroscience | 2016

Mechanostimulation Promotes Nuclear and Epigenetic Changes in Oligodendrocytes

Marylens Hernandez; Julia Patzig; Sonia R. Mayoral; Kevin D. Costa; Jonah R. Chan; Patrizia Casaccia

Oligodendrocyte progenitors respond to biophysical or mechanical signals, and it has been reported that mechanostimulation modulates cell proliferation, migration, and differentiation. Here we report the effect of three mechanical stimuli on mouse oligodendrocyte progenitor differentiation and identify the molecular components of the linker of nucleoskeleton and cytoskeleton (LINC) complex (i.e., SYNE1) as transducers of mechanical signals to the nucleus, where they modulate the deposition of repressive histone marks and heterochromatin formation. The expression levels of LINC components increased during progenitor differentiation and silencing the Syne1 gene resulted in aberrant histone marks deposition, chromatin reorganization and impaired myelination. We conclude that spatial constraints, via the actin cytoskeleton and LINC complex, mediate nuclear changes in oligodendrocyte progenitors that favor a default pathway of differentiation. SIGNIFICANCE STATEMENT It is recognized that oligodendrocyte progenitors are mechanosensitive cells. However, the molecular mechanisms translating mechanical stimuli into oligodendrocyte differentiation remain elusive. This study identifies components of the mechanotransduction pathway in the oligodendrocyte lineage.


Glia | 2013

Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2

Patricia de Monasterio-Schrader; Julia Patzig; Wiebke Möbius; Benoit Barrette; Tadzio L. Wagner; Kathrin Kusch; Julia M. Edgar; Peter J. Brophy; Hauke B. Werner

Deficiency of the major constituent of central nervous system (CNS) myelin, proteolipid protein (PLP), causes axonal pathology in spastic paraplegia type‐2 patients and in Plp1null‐mice but is compatible with almost normal myelination. These observations led us to speculate that PLPs role in myelination may be partly compensated for by other tetraspan proteins. Here, we demonstrate that the abundance of the structurally related tetraspanin‐2 (TSPAN2) is highly increased in CNS myelin of Plp1null‐mice. Unexpectedly, Tspan2null‐mutant mice generated by homologous recombination in embryonic stem cells displayed low‐grade activation of astrocytes and microglia in white matter tracts while they were fully myelinated and showed no signs of axonal degeneration. To determine overlapping functions of TSPAN2 and PLP, Tspan2null*Plp1null double‐mutant mice were generated. Strikingly, the activation of astrocytes and microglia was strongly enhanced in Tspan2null*Plp1null double‐mutants compared with either single‐mutant, but the levels of dysmyelination and axonal degeneration were not increased. In this model, glial activation is thus unlikely to be caused by axonal pathology, and vice versa does not potentiate axonal degeneration. Our results support the concept that multiple myelin proteins have distinct roles in the long‐term preservation of a healthy CNS, rather than in myelination per se. GLIA 2013;61:1832–1847


eLife | 2016

Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

Julia Patzig; Michelle S. Erwig; Stefan Tenzer; Kathrin Kusch; Payam Dibaj; Wiebke Möbius; Sandra Goebbels; Nicole Schaeren-Wiemers; Klaus-Armin Nave; Hauke B. Werner

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001


Behavioural Brain Research | 2015

Gpm6b deficiency impairs sensorimotor gating and modulates the behavioral response to a 5-HT2A/C receptor agonist.

Ekrem Dere; Daniela Winkler; Caroline Ritter; Anja Ronnenberg; Giulia Poggi; Julia Patzig; Manuela Gernert; Christian P. Müller; Klaus-Armin Nave; Hannelore Ehrenreich; Hauke B. Werner

The neuronal tetraspan proteins, M6A (Gpm6a) and M6B (Gpm6b), belong to the family of proteolipids that are widely expressed in the brain. We recently reported Gpm6a deficiency as a monogenetic cause of claustrophobia in mice. Its homolog proteolipid, Gpm6b, is ubiquitously expressed in neurons and oligodendrocytes. Gpm6b is involved in neuronal differentiation and myelination. It interacts with the N-terminal domain of the serotonin transporter (SERT) and decreases cell-surface expression of SERT. In the present study, we employed Gpm6b null mutant mice (Gpm6b(-/-)) to search for behavioral functions of Gpm6b. We studied male and female Gpm6b(-/-) mice and their wild-type (WT, Gpm6b(+/+)) littermates in an extensive behavioral test battery. Additionally, we investigated whether Gpm6b(-/-) mice exhibit changes in the behavioral response to a 5-HT2A/C receptor agonist. We found that Gpm6b(-/-) mice display completely normal sensory and motor functions, cognition, as well as social and emotionality-like (anxiety, depression) behaviors. On top of this inconspicuous behavioral profile, Gpm6b(-/-) mice of both genders exhibit a selective impairment in prepulse inhibition of the acoustic startle response. Furthermore, in contrast to WT mice that show the typical locomotion suppression and increase in grooming activity after intraperitoneal administration of DOI [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride], Gpm6b(-/-) mice demonstrate a blunted behavioral response to this 5-HT2A/C receptor agonist. To conclude, Gpm6b deficiency impairs sensorimotor gating and modulates the behavioral response to a serotonergic challenge.


Archive | 2013

Myelin Proteome Analysis: Methods and Implications for the Myelin Cytoskeleton

Olaf Jahn; Stefan Tenzer; Nicole Bartsch; Julia Patzig; Hauke B. Werner

Myelin, the multilayered membrane that enwraps and insulates neuronal axons for fast signal propagation, is a plasma membrane specialization of oligodendrocytes and Schwann cells in the central and peripheral nervous system, respectively. Here we provide our lab protocols for the puri fi cation of myelin from mouse brains and for gel-based and gel-free proteomic applications, as well as a brief discussion with respect to our current knowledge of the myelin cytoskeleton.


Glia | 2016

Proteolipid protein modulates preservation of peripheral axons and premature death when myelin protein zero is lacking

Julia Patzig; Kathrin Kusch; Robert Fledrich; Maria A. Eichel; Katja A. Lüders; Wiebke Möbius; Michael W. Sereda; Klaus-Armin Nave; Rudolf Martini; Hauke B. Werner

Protein zero (P0) is the major structural component of peripheral myelin. Lack of this adhesion protein from Schwann cells causes a severe dysmyelinating neuropathy with secondary axonal degeneration in humans with the neuropathy Dejerine‐Sottas syndrome (DSS) and in the corresponding mouse model (P0null‐mice). In the mammalian CNS, the tetraspan‐membrane protein PLP is the major structural myelin constituent and required for the long‐term preservation of myelinated axons, which fails in hereditary spastic paraplegia (SPG type‐2) and the relevant mouse model (Plpnull‐mice). The Plp‐gene is also expressed in Schwann cells but PLP is of very low abundance in normal peripheral myelin; its function has thus remained enigmatic. Here we show that the abundance of PLP but not of other tetraspan myelin proteins is strongly increased in compact peripheral myelin of P0null‐mice. To determine the functional relevance of PLP expression in the absence of P0, we generated P0null*Plpnull‐double‐mutant mice. Compared with either single‐mutant, P0null*Plpnull‐mice display impaired nerve conduction, reduced motor functions, and premature death. At the morphological level, axonal segments were frequently non‐myelinated but in a one‐to‐one relationship with a hypertrophic Schwann cell. Importantly, axonal numbers were reduced in the vital phrenic nerve of P0null*Plpnull‐mice. In the absence of P0, thus, PLP also contributes to myelination by Schwann cells and to the preservation of peripheral axons. These data provide a link between the Schwann cell‐dependent support of peripheral axons and the oligodendrocyte‐dependent support of central axons. GLIA 2016;64:155–174

Collaboration


Dive into the Julia Patzig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge