Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia W. Neilson is active.

Publication


Featured researches published by Julia W. Neilson.


The New England Journal of Medicine | 2016

Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children

Michelle M. Stein; Cara L. Hrusch; Justyna Gozdz; Catherine Igartua; Vadim Pivniouk; Sean E. Murray; Julie G. Ledford; Mauricius Marques dos Santos; Rebecca L. Anderson; Nervana Metwali; Julia W. Neilson; Raina M. Maier; Jack A. Gilbert; Mark Holbreich; Peter S. Thorne; Fernando D. Martinez; Erika von Mutius; Donata Vercelli; Carole Ober; Anne I. Sperling

BACKGROUND The Amish and Hutterites are U.S. agricultural populations whose lifestyles are remarkably similar in many respects but whose farming practices, in particular, are distinct; the former follow traditional farming practices whereas the latter use industrialized farming practices. The populations also show striking disparities in the prevalence of asthma, and little is known about the immune responses underlying these disparities. METHODS We studied environmental exposures, genetic ancestry, and immune profiles among 60 Amish and Hutterite children, measuring levels of allergens and endotoxins and assessing the microbiome composition of indoor dust samples. Whole blood was collected to measure serum IgE levels, cytokine responses, and gene expression, and peripheral-blood leukocytes were phenotyped with flow cytometry. The effects of dust extracts obtained from Amish and Hutterite homes on immune and airway responses were assessed in a murine model of experimental allergic asthma. RESULTS Despite the similar genetic ancestries and lifestyles of Amish and Hutterite children, the prevalence of asthma and allergic sensitization was 4 and 6 times as low in the Amish, whereas median endotoxin levels in Amish house dust was 6.8 times as high. Differences in microbial composition were also observed in dust samples from Amish and Hutterite homes. Profound differences in the proportions, phenotypes, and functions of innate immune cells were also found between the two groups of children. In a mouse model of experimental allergic asthma, the intranasal instillation of dust extracts from Amish but not Hutterite homes significantly inhibited airway hyperreactivity and eosinophilia. These protective effects were abrogated in mice that were deficient in MyD88 and Trif, molecules that are critical in innate immune signaling. CONCLUSIONS The results of our studies in humans and mice indicate that the Amish environment provides protection against asthma by engaging and shaping the innate immune response. (Funded by the National Institutes of Health and others.).


Applied and Environmental Microbiology | 2006

Bacterial community structure in the hyperarid core of the Atacama Desert, Chile.

Kevin P. Drees; Julia W. Neilson; Julio L. Betancourt; Jay Quade; David A. Henderson; Barry M. Pryor; Raina M. Maier

ABSTRACT Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70°S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.


Applied and Environmental Microbiology | 2008

Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site.

Monica O. Mendez; Julia W. Neilson; Raina M. Maier

ABSTRACT Bacterial diversity in mine tailing microbial communities has not been thoroughly investigated despite the correlations that have been observed between the relative microbial diversity and the success of revegetation efforts at tailing sites. This study employed phylogenetic analyses of 16S rRNA genes to compare the bacterial communities present in highly disturbed, extremely (pH 2.7) and moderately (pH 5.7) acidic lead-zinc mine tailing samples from a semiarid environment with those from a vegetated off-site (OS) control sample (pH 8). Phylotype richness in these communities decreased from 42 in the OS control to 24 in the moderately acidic samples and 8 in the extremely acidic tailing samples. The clones in the extremely acidic tailing sample were most closely related to acidophiles, none of which were detected in the OS control sample. The comparison generated by this study between the bacteria present in extremely acidic tailing and that in moderately acidic tailing communities with those in an OS control soil provides a reference point from which to evaluate the successful restoration of mine tailing disposal sites by phytostabilization.


Extremophiles | 2012

Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile

Julia W. Neilson; Jay Quade; Marianyoly Ortiz; William Nelson; Antje Legatzki; Fei Tian; Michelle LaComb; Julio L. Betancourt; Rod A. Wing; Carol Soderlund; Raina M. Maier

Nearly half the earth’s surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid–arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.


Microbial Ecology | 2007

Culturable Microbial Diversity and the Impact of Tourism in Kartchner Caverns, Arizona

Luisa A. Ikner; Rickard S. Toomey; Ginger Nolan; Julia W. Neilson; Barry M. Pryor; Raina M. Maier

Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year–1) and compared to samples taken from areas designated as having medium (30–40 visitors year–1) and low (2–3 visitors year–1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.


Journal of Microbiological Methods | 2013

Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis.

Julia W. Neilson; Fiona Jordan; Raina M. Maier

PCR-denaturing gradient gel electrophoresis (PCR-DGGE) is widely used in microbial ecology for the analysis of comparative community structure. However, artifacts generated during PCR-DGGE of mixed template communities impede the application of this technique to quantitative analysis of community diversity. The objective of the current study was to employ an artificial bacterial community to document and analyze artifacts associated with multiband signatures and preferential template amplification and to highlight their impacts on the use of this technique for quantitative diversity analysis. Six bacterial species (three Betaproteobacteria, two Alphaproteobacteria, and one Firmicutes) were amplified individually and in combinations with primers targeting the V7/V8 region of the 16S rRNA gene. Two of the six isolates produced multiband profiles demonstrating that band number does not correlate directly with α-diversity. Analysis of the multiple bands from one of these isolates confirmed that both bands had identical sequences which lead to the hypothesis that the multiband pattern resulted from two distinct structural conformations of the same amplicon. In addition, consistent preferential amplification was demonstrated following pairwise amplifications of the six isolates. DGGE and real time PCR analysis identified primer mismatch and PCR inhibition due to 16S rDNA secondary structure as the most probable causes of preferential amplification patterns. Reproducible DGGE community profiles generated in this study confirm that PCR-DGGE provides an excellent high-throughput tool for comparative community structure analysis, but that method-specific artifacts preclude its use for accurate comparative diversity analysis.


Applied and Environmental Microbiology | 2010

Environmental Determinants of and Impact on Childhood Asthma by the Bacterial Community in Household Dust

Raina M. Maier; Michael W. Palmer; Gary L. Andersen; Marilyn Halonen; Karen C. Josephson; Robert S. Maier; Fernando D. Martinez; Julia W. Neilson; Debra A. Stern; Donata Vercelli; Anne L. Wright

ABSTRACT Asthma increased dramatically in the last decades of the 20th century and is representative of chronic diseases that have been linked to altered microbial exposure and immune responses. Here we evaluate the effects of environmental exposures typically associated with asthma protection or risk on the microbial community structure of household dust (dogs, cats, and day care). PCR-denaturing gradient gel analysis (PCR-DGGE) demonstrated that the bacterial community structure in house dust is significantly impacted by the presence of dogs or cats in the home (P = 0.0190 and 0.0029, respectively) and by whether or not children attend day care (P = 0.0037). In addition, significant differences in the dust bacterial community were associated with asthma outcomes in young children, including wheezing (P = 0.0103) and specific IgE (P = 0.0184). Our findings suggest that specific bacterial populations within the community are associated with either risk or protection from asthma.


The ISME Journal | 2014

Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave.

Marianyoly Ortiz; Antje Legatzki; Julia W. Neilson; Brandon Fryslie; William Nelson; Rod A. Wing; Carol Soderlund; Barry M. Pryor; Raina M. Maier

Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin–Benson–Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.


Geomicrobiology Journal | 2011

Bacterial and Archaeal Community Structure of Two Adjacent Calcite Speleothems in Kartchner Caverns, Arizona, USA

Antje Legatzki; Marian Ortiz; Julia W. Neilson; Sky Dominguez; Gary L. Andersen; Rickard S. Toomey; Barry M. Pryor; Leland S. Pierson; Raina M. Maier

Information concerning the bacterial and archaeal communities present on calcite speleothems in carbonate caves is of interest because the activity of these microbes has been implicated as a potential biogenic component in the formation of secondary mineral deposits. In addition, these speleothems may harbor unique, previously unidentified microbes. The current study presents a comparative analysis of the superficial bacterial and archaeal community structure of multiple stalactites from two different cave formations located in close proximity to each other in a nonhuman-impacted area of Kartchner Caverns, Arizona, USA. PCR-denaturing gradient gel electrophoresis analysis (PCR-DGGE) revealed that microbial communities sampled from stalactites of a single speleothem are more similar to each other than to the communities sampled from stalactites of an adjacent speleothem, suggesting that both bacterial and archaeal communities are speleothem-specific. SR-XRD analysis confirmed that both speleothems sampled were primarily calcite, but subtle differences were detected in the elemental composition profiles obtained from ICP-MS analysis indicating that substrate geochemistry was also speleothem-specific. PhyloChip analysis of composite samples from both speleothems revealed a broad diversity of phyla represented in the bacterial communities, while bacterial and archaeal bands sequenced from the DGGE profiles confirmed the presence of unique phylotypes not closely related ( < 96% similarity) to any sequences deposited in the GenBank database.


Science of The Total Environment | 2014

Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment.

Alexis Valentín-Vargas; Robert A. Root; Julia W. Neilson; Jon Chorover; Raina M. Maier

Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings.

Collaboration


Dive into the Julia W. Neilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Quade

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge