Julien Marchal
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Marchal.
IEEE Transactions on Nuclear Science | 2011
E.N. Gimenez; Rafael Ballabriga; M. Campbell; Ian Horswell; Xavier Llopart; Julien Marchal; Kawal J. S. Sawhney; N. Tartoni; D. Turecek
Medipix3 is the latest generation of photon counting readout chips of the Medipix family. With the same dimensions as Medipix2 (256 × 256 pixels of 55 μm × 55 μm pitch each), Medipix3 is however implemented in an 8-layer metallization 0.13 μm CMOS technology which leads to an increase in the functionality associated with each pixel over Medipix2. One of the new operational modes implemented in the front-end architecture is the Charge Summing Mode (CSM). This mode consists of a charge reconstruction and hit allocation algorithm which eliminates event-by-event the low energy counts produced by charge-shared events between adjacent pixels. The present work focuses on the study of the CSM mode and compares it to the Single Pixel Mode (SPM) which is the conventional readout method for these kind of detectors and it is also implemented in Medipix3. Tests of a Medipix3 chip bump-bonded to a 300 μm thick silicon photodiode sensor were performed at the Diamond Light Source synchrotron to evaluate the performance of the new Medipix chip. Studies showed that when Medipix3 is operated in CSM mode, it generates a single count per detected event and consequently the charge sharing effect between adjacent pixels is eliminated. However in CSM mode, it was also observed that an incorrect allocation of X-rays counts in the pixels occurred due to an unexpectedly high pixel-to-pixel threshold variation. The present experiment helped to better understand the CSM operating mode and to redesign the Medipix3 to overcome this pixel-to-pixel mismatch.
Journal of Instrumentation | 2011
E.N. Gimenez; Rafael Ballabriga; M. Campbell; Ian Horswell; Xavier Llopart; Julien Marchal; Kawal J. S. Sawhney; N. Tartoni; D Turecek
X-ray photon-counting detectors consisting of a silicon pixel array sensor bump-bonded to a CMOS electronic readout chip offer several advantages over traditional X-ray detection technologies used for synchrotron applications. They offer high frame rate, dynamic range, count rate capability and signal-to-noise ratio. A survey of the requirements for future synchrotron detectors carried out at the Diamond Light Source synchrotron highlighted the needs for detectors with a pixel size of the order of 50?m. Reducing the pixel size leads to an increase of charge-sharing events between adjacent pixels and, therefore, to a degradation of the energy resolution and image quality of the detector. This effect was observed with MEDIPIX2, a photon-counting readout chip with a pixel size of 55?m. The lastest generation of the MEDIPIX family, MEDIPIX3, is designed to overcome this charge-sharing effect in an implemented readout operating mode referred to as Charge Summing Mode. MEDIPIX3 has the same pixel size as MEDIPIX2, but it is implemented in an 8-metal 0.13?m CMOS technology which enables increased functionality per pixel. The present work focuses on the study of the charge-sharing effect when the MEDIPIX3 is operated in Charge Summing Mode compared to the conventional readout mode, referred to as Single Pixel Mode. Tests of a standard silicon photodiode array bump-bonded to MEDIPIX3 were performed in beamline B16 at the Diamond Light Source synchrotron. A monochromatic micro-focused beam of 2.9?m x 2.2?m size at 15keV was used to scan a cluster of nine pixels in order to study the charge collection and X-ray count allocation process for each readout mode, Single Pixel Mode and Charge Summing Mode. The study showed that charge-shared events were eliminated when Medipix3 was operated in Charge Summing Mode.
Journal of Instrumentation | 2011
A. Mac Raighne; K. Akiba; L. Alianelli; R. L. Bates; M. van Beuzekom; J. Buytaert; M. Campbell; P. Collins; M. Crossley; R. Dumps; L. Eklund; C. Fleta; A. Gallas; M. Gersabeck; E.N. Gimenez; V.V. Gligorov; M. John; X. Llopart; M. Lozano; D. Maneuski; Julien Marchal; M. Nicol; R. Plackett; C. Parkes; G. Pellegrini; D Pennicard; E. Rodrigues; G. A. Stewart; Kawal Sawhney; N. Tartoni
Three-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed.
nuclear science symposium and medical imaging conference | 2012
N. Tartoni; G. Dennis; P. Gibbons; E.N. Gimenez; Ian Horswell; Julien Marchal; U. Pedersen; Z. Pesic; R. Plackett; C. Rau; R. Somayaji; J. Spiers; J. Thompson; B. Willis; Christian Angelsen; P. Booker; S. Burge; J. Lipp; T.C. Nicholls; S. Taghavi; M. Thorpe
A three million pixels photon counting area detector for the coherent diffraction imaging beam line (113) of Diamond Light Source has been developed by a joint team of Diamond and STFC staff. The detector is the state of the art of X-ray detection technology since it exploits the latest generation of Medipix ASICs family that introduced a number of innovations. The specifications required by the beam line represented a severe challenge to all of the components of the detector. The frame rate of Excalibur is up to 1,000 frames per second when stored in local RAM or up to 100 frames per second when streamed to storage. Tests with an X-ray set show the imaging capabilities of the detector as well as the data acquisition speed.
Journal of Instrumentation | 2012
Julien Marchal; Kadda Medjoubi
A Detective Quantum Efficiency (DQE) model of single-X-ray-Photon Counting Hybrid Pixel Detectors (PC-HPDs) is presented. It applies to PC-HPDs based on semiconductor sensors such as silicon and CdTe pixel sensors. Charge-sharing effects are introduced in the expressions of imaging performance parameters such as large-area gain factor, presampling modulation transfer function and digital noise power spectrum, using the concept of threshold-dependent effective fill-factor. A simple X-ray induced charge distribution approximation is used to derive a practical formula for the threshold-dependent large-area gain factor, i.e. the integral X-ray spectrum which can be indirectly measured with a PC-HPD. This detector model was applied to standard synchrotron X-ray PC-HPDs: MEDIPIX3, PILATUS and XPAD detectors.
IEEE Transactions on Nuclear Science | 2015
E.N. Gimenez; Rafael Ballabriga; G Blaj; M. Campbell; Igor Dolbnya; Erik Frodjh; Ian Horswell; Xavier Llopart; Julien Marchal; John McGrath; David Omar; R. Plackett; Kawal J. S. Sawhney; N. Tartoni
The Medipix3RX is the latest version of the Medipix3 photon counting ASICs, which implements two new operational modes, with respect to the Medipix2 ASIC, aimed at eliminating charge shared events (referred to as Charge Summing Mode (CSM)) and at providing spectroscopic information (referred to as Colour Mode (CM)). The Medipix3RX is a redesign of the Medipix3v0 ASIC and corrects for the underperformance of CSM features observed in the previous version. This paper presents the results from synchrotron X-rays tests to evaluate the Medipix3RX ASIC performance. The newly implemented CSM algorithm eliminates the charge sharing effect at the same time as allocating the event to the readout pixel corresponding to the sensor pixel where the X-ray photon impinged. The new pixel trimming circuit led to a reduced dispersion between pixels. Further results of the linearity for all the gain modes, energy resolution and pixel uniformity are also presented.
Journal of Instrumentation | 2011
Julien Marchal; Benjamin Luethi; Catalin Ursachi; Vitaliy Mykhaylyk; Armin Wagner
The feasibility of using PILATUS single-X-ray-photon counting detectors for long-wavelength macromolecular crystallography was investigated by carrying out a series of experiments at Diamond Light Source. A water-cooled PILATUS 100k detector was tested in vacuum with monochromatic 3 keV X-rays on the Diamond test beamline B16. Effects of detector cooling on noise performance, energy calibration and threshold trimming were investigated. When detecting 3 keV X-rays, the electronic noise of the analogue output of pixel preamplifiers forces the threshold to be set at a higher level than the 50% energy level recommended to minimize charge-sharing effects. The influence of threshold settings at low X-ray energy was studied by characterizing the detector response to a collimated beam of 3 keV X-rays scanned across several pixels. The relationship between maximum count rate and minimum energy threshold was investigated separately for various detector gain settings.
ieee nuclear science symposium | 2009
Aaron Mac Raighne; K. Akiba; L. Alianelli; M. Artuso; R. L. Bates; Florian Bayer; J. Buytaert; P. Collins; M. Crossley; L. Eklund; C. Fleta; A. Gallas; M. Gandelman; M. Gersabeck; E.N. Gimenez; V.V. Gligorov; T. Huse; M. John; Lourdes Ferre Llin; M. Lozano; D. Maneuski; Julien Marchal; Thilo Michel; Michelle Nicol; Giulio Pellegrini; D. E. Perira; R. Plackett; V. O'Shea; C. Parkes; E. Rodrigues
In this article we report on the use micro-focus synchrotron X-ray radiation and pion beams to compare the detection efficiencies and charge sharing properties of novel 3D detectors to that of the current planar technology. Detector substrates are bump-bonded to the Medipx2 and Timepix chips. 55μm square pixel maps of the detection efficiencies have been produced using X-ray and MIP beams. For X-rays, a drop of 3-4% detection efficiency over the pixel area was found due to the central electrode. The corner electrodes show no degradation in efficiency compared to that of the planar device. For MIPs a drop of 0.5% in efficiency due to the central electrode was observed. Evidence of a considerable reduction in charge sharing in the 3D detectors compared to the planar devices is also shown.
Journal of Instrumentation | 2012
Erik Fröjdh; Christer Fröjdh; E.N. Gimenez; D. Maneuski; Julien Marchal; Börje Norlin; V. O'Shea; G. A. Stewart; H. Wilhelm; R Modh Zain; Göran Thungström
High stopping power is one of the most important figures of merit for X-ray detectors. CdTe is a promising material but suffers from: material defects, non-ideal charge transport and long range X-ray fluorescence. Those factors reduce the image quality and deteriorate spectral information. In this project we used a monochromatic pencil beam collimated through a 20μm pinhole to measure the detector spectral response in dependance on the depth of interaction. The sensor was a 1mm thick CdTe detector with a pixel pitch of 110μm, bump bonded to a Timepix readout chip operating in Time-Over-Threshold mode. The measurements were carried out at the Extreme Conditions beamline I15 of the Diamond Light Source. The beam was entering the sensor at an angle of \texttildelow20 degrees to the surface and then passed through \texttildelow25 pixels before leaving through the bottom of the sensor. The photon energy was tuned to 77keV giving a variation in the beam intensity of about three orders of magnitude along the beam path. Spectra in Time-over-Threshold (ToT) mode were recorded showing each individual interaction. The bias voltage was varied between -30V and -300V to investigate how the electric field affected the spectral information. For this setup it is worth noticing the large impact of fluorescence. At -300V the photo peak and escape peak are of similar height. For high bias voltages the spectra remains clear throughout the whole depth but for lower voltages as -50V, only the bottom part of the sensor carries spectral information. This is an effect of the low hole mobility and the longer range the electrons have to travel in a low field.
Journal of Instrumentation | 2014
J McGrath; Julien Marchal; R. Plackett; Ian Horswell; D Omar; E.N. Gimenez; N. Tartoni
A simulation toolkit developed for use at Diamond Light Source is presented, accompanied with experimental validation using a silicon pixel-array sensor coupled to a Medipix3RX chip controlled via the Merlin Readout System. The simulation makes use of Geant4, where photons are tracked in order to determine their position of interaction and energy deposition. Further to this, a Finite Element Methods package, Comsol, is used to model the Charge Induction Efficiencies of various sensors. Results are coupled to Geant4 simulations to provide an accurate method for computing the signals generated on each pixel within the sensor and then an algorithm to model the front-end electronics of the device. The validity of the simulation toolkit is tested by investigating charge-sharing effects using a Medipix3RX chip bump-bonded to a silicon pixel-array sensor. The dependence of the imaging parameters, on the energy threshold, is presented from both simulation and experiment for the Medipix3RX chip operated with and without the charge sharing compensation circuitry enabled. This simulation toolkit can be used to calculate image quality parameters for the next generation of detectors, including CdTe, as well as to improve data corrections on existing detectors on synchrotron beamlines.