Jun Hirabayashi
National Institute of Advanced Industrial Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun Hirabayashi.
Nature Biotechnology | 2003
Hiroyuki Kaji; Haruna Saito; Yoshio Yamauchi; Takashi Shinkawa; Masato Taoka; Jun Hirabayashi; Ken-ichi Kasai; Nobuhiro Takahashi; Toshiaki Isobe
We describe here a strategy for the large-scale identification of N-glycosylated proteins from a complex biological sample. The approach, termed isotope-coded glycosylation-site-specific tagging (IGOT), is based on the lectin column–mediated affinity capture of a set of glycopeptides generated by tryptic digestion of protein mixtures, followed by peptide-N-glycosidase–mediated incorporation of a stable isotope tag, 18O, specifically into the N-glycosylation site. The 18O-tagged peptides are then identified by multi-dimensional liquid chromatography–mass spectrometry (LC-MS)-based technology. The application of this method to the characterization of N-linked high-mannose and/or hybrid-type glycoproteins from an extract of Caenorhabditis elegans proteins allowed the identification of 250 glycoproteins, including 83 putative transmembrane proteins, with the simultaneous determination of 400 unique N-glycosylation sites. Because the method is applicable to the systematic identification of a wide range of glycoproteins, it should facilitate basic glycobiology research and may be useful for diagnostic applications, such as genome-wide screening for disease-related glycoproteins.
Nature Methods | 2005
Atsushi Kuno; Noboru Uchiyama; Shiori Koseki-Kuno; Youji Ebe; Seigo Takashima; Masao Yamada; Jun Hirabayashi
Glycans have important roles in living organisms with their structural diversity. Thus, glycomics, especially aspects involving the assignment of functional glycans in a high-throughput manner, has been an emerging field in the postproteomics era. To date, however, there has been no versatile method for glycan profiling. Here we describe a new microarray procedure based on an evanescent-field fluorescence-detection principle, which allows sensitive, real-time observation of multiple lectin-carbohydrate interactions under equilibrium conditions. The method allows quantitative detection of even weak lectin-carbohydrate interactions (dissociation constant, Kd > 10−6 M) as fluorescent signals for 39 immobilized lectins. We derived fully specific signal patterns for various Cy3-labeled glycoproteins, glycopeptides and tetramethylrhodamine (TMR)-labeled oligosaccharides. The obtained results were consistent with the previous reports of glycoprotein and lectin specificities. We investigated the latter aspects in detail by frontal affinity chromatography, another profiling method. Thus, the developed lectin microarray should contribute to creation of a new paradigm for glycomics.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Sho Yamasaki; Makoto Matsumoto; Osamu Takeuchi; Tetsuhiro Matsuzawa; Eri Ishikawa; Machie Sakuma; Hiroaki Tateno; Jun Uno; Jun Hirabayashi; Yuzuru Mikami; Kiyoshi Takeda; Shizuo Akira; Takashi Saito
Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus.
Glycoconjugate Journal | 2004
Jun Hirabayashi
Structural glycomics (SG) plays a fundamental part of concurrent glycobiology aiming at comprehensive elucidation of glycan functions (i.e., functional glycomics) in the context of post-genome sciences. The SG project started in April 2003 and will continue for 3 years in the framework of NEDO (New Energy and Industrial Technology Organization) under the METI (the Ministry of Economy, Trade, and Industry), Japan. The main purpose of the project is the development of high-throughput and robust machines, which should greatly contribute to the structural analysis of complex glycans. In this chapter, 2 major research items, i.e., (1) glycoproteomics, which enables comprehensive analysis of glycoproteins, and (2) “glycan profiling” by means of lectins, are described. For the latter, frontal affinity chromatography has been adopted as a starting tool for comprehensive analysis of the interaction of 100 lectins and 100 oligosaccharides under the concept of “hect-by-hect,” which refers to 100 × 100. Published in 2004.
Journal of Biological Chemistry | 2007
Lu-Gang Yu; Nigel Andrews; Qicheng Zhao; Daniel McKean; Jennifer F. Williams; Lucy J. Connor; Oleg Vsevolodovich Gerasimenko; John Hilkens; Jun Hirabayashi; Ken-ichi Kasai; Jonathan Rhodes
Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 μg/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 ± 21%, mean ± S.D.) and 93% (93 ± 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Galβ1,3 GalNAc-α (TF)) but did not affect adhesion of MUC1-negative HCA1.7-cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-β1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.
Journal of Biological Chemistry | 2007
Julie Nieminen; Atsushi Kuno; Jun Hirabayashi; Sachiko Sato
Galectin-3, a member of the galectin family of carbohydrate binding proteins, is widely expressed, particularly in cells involved in the immune response. Galectin-3 has also been indicated to play a role in various biological activities ranging from cell repression to cell activation and adhesion and has, thus, been recognized as an immunomodulator. Whereas those activities are likely to be associated with ligand cross-linking by this lectin, galectin-3, unlike other members of the galectin family, exists as a monomer. It has consequently been proposed that oligomerization of the N-terminal domains of galectin-3 molecules, after ligand binding by the C-terminal domain, is responsible for this cross-linking. The oligomerization status of galectin-3 could, thus, control the majority of its extracellular activities. However, little is known about the actual mode of action through which galectin-3 exerts its function. In this report we present data suggesting that oligomerization of galectin-3 molecules occurs on cell surfaces with physiological concentrations of the lectin. Using galectin-3 labeled at the C terminus with Alexa 488 or Alexa 555, the oligomerization between galectin-3 molecules on cell surfaces was detected using fluorescence resonance energy transfer. We observed this fluorescence resonance energy transfer signal in different biological settings representing the different modes of action of galectin-3 that we previously proposed; that is, ligand crosslinking leading to cell activation, cell-cell interaction/adhesion, and lattice formation. Furthermore, our data suggest that galectin-3 lattices are robust and could, thus, be involved, as previously proposed, in the restriction of receptor clustering.
Journal of Immunology | 2006
Marta A. Toscano; Alessandra Gonçalves Commodaro; Juan M. Ilarregui; Germán A. Bianco; Ana C. Liberman; Horacio M. Serra; Jun Hirabayashi; Luiz Vicente Rizzo; Gabriel A. Rabinovich
Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells. Administration of rGal-1 at the early or late phases of EAU ameliorated disease by skewing the uveitogenic response toward nonpathogenic Th2 or T regulatory-mediated anti-inflammatory responses. Consistently, adoptive transfer of CD4+ regulatory T cells obtained from rGal-1-treated mice prevented the development of active EAU in syngeneic recipients. In addition, increased levels of apoptosis were detected in lymph nodes from mice treated with rGal-1 during the efferent phase of the disease. Our results underscore the ability of Gal-1 to counteract Th1-mediated responses through different, but potentially overlapping anti-inflammatory mechanisms and suggest a possible therapeutic use of this protein for the treatment of human uveitic diseases of autoimmune etiology.
American Journal of Pathology | 2003
Mylinh La; Thong V. Cao; Graziela Cerchiaro; Kathya Chilton; Jun Hirabayashi; Ken-ichi Kasai; Sonia Maria Oliani; Yuti Chernajovsky; Mauro Perretti
Galectin-1 (Gal-1), the prototype of a family of beta-galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 micro g equivalent to 20 pmol) inhibited interleukin-1beta-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and postadherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.
Chemical Society Reviews | 2013
Jun Hirabayashi; Masao Yamada; Atsushi Kuno; Hiroaki Tateno
The lectin microarray is a novel platform for glycan analysis, having emerged only in recent years. Unlike other conventional methods, e.g., liquid chromatography and mass spectrometry, it enables rapid and high-sensitivity profiling of complex glycan features without the need for liberation of glycans. Target samples include an extensive range of glycoconjugates involved in cells, tissues, body fluids, as well as synthetic glycans and their mimics. Various procedures for rapid differential glycan profiling have been developed for glycan-related biomarkers. Such glycoproteomics targeting allows precise diagnosis of chronic diseases potentially related to cancer. Application of this method to evaluation of various types of stem cells resulted in the discovery of a new pluripotent cell-specific glycan marker. To explore this technology a more fundamental and extensive understanding of lectins is necessary in relation to the structural uniqueness of glycans. In this chapter, the essence of the lectin microarray is described with some focus on an evanescent-field-activated fluorescence detection principle as a system to achieve in situ (i.e., washing free) aqueous-phase observation under equilibrium conditions. The developed lectin microarray system allows even researchers with poor experience in glycan profiling to perform extensive high-throughput analysis targeting various forms of glycans and even cells.
Journal of Immunology | 2008
Keiko Nagahara; Tomohiro Arikawa; Souichi Oomizu; Keiichi Kontani; Atsuya Nobumoto; Hiroaki Tateno; Kota Watanabe; Toshiro Niki; Shigeki Katoh; Minoru Miyake; Syun-Ichiro Nagahata; Jun Hirabayashi; Vijay K. Kuchroo; Akira Yamauchi; Mitsuomi Hirashima
A Tim-3 ligand, galectin-9 (Gal-9), modulates various functions of innate and adaptive immune responses. In this study, we demonstrate that Gal-9 prolongs the survival of Meth-A tumor-bearing mice in a dose- and time-dependent manner. Although Gal-9 did not prolong the survival of tumor-bearing nude mice, transfer of naive spleen cells restored a prolonged Gal-9-induced survival in nude mice, indicating possible involvement of T cell-mediated immune responses in Gal-9-mediated antitumor activity. Gal-9 administration increased the number of IFN-γ-producing Tim-3+ CD8+ T cells with enhanced granzyme B and perforin expression, although it induced CD4+ T cell apoptosis. It simultaneously increased the number of Tim-3+CD86+ mature dendritic cells (DCs) in vivo and in vitro. Coculture of CD8+ T cells with DCs from Gal-9-treated mice increased the number of IFN-γ producing cells and IFN-γ production. Depletion of Tim-3+ DCs from DCs of Gal-9-treated tumor-bearing mice decreased the number of IFN-γ-producing CD8+ T cells. Such DC activity was significantly abrogated by Tim-3-Ig, suggesting that Gal-9 potentiates CD8+ T cell-mediated antitumor immunity via Gal-9-Tim-3 interactions between DCs and CD8+ T cells.
Collaboration
Dive into the Jun Hirabayashi's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs