Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Yu Ma is active.

Publication


Featured researches published by Jun-Yu Ma.


PLOS ONE | 2011

Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development

Yanchang Wei; Saima Multi; Cai-Rong Yang; Jun-Yu Ma; Qing Hua Zhang; Zhen Bo Wang; Mo Li; Liang Wei; Zhao Jia Ge; Chun Hui Zhang; Ying-Chun Ouyang; Yi Hou; Heide Schatten; Qing-Yuan Sun

Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos.


Cell Cycle | 2013

The effects of DNA double-strand breaks on mouse oocyte meiotic maturation

Jun-Yu Ma; Ying-Chun Ouyang; Zhong-Wei Wang; Zhen Wang; Zong-Zhe Jiang; Shi-Ming Luo; Yi Hou; Zhonghua Liu; Heide Schatten; Qing-Yuan Sun

Both endogenous and exogenous factors can induce DNA double-strand breaks (DSBs) in oocytes, which is a potential risk for human-assisted reproductive technology as well as animal nuclear transfer. Here we used bleomycin (BLM) and laser micro-beam dissection (LMD) to induce DNA DSBs in germinal vesicle (GV) stage oocytes and compared the germinal vesicle breakdown (GVBD) rates and first polar body extrusion (PBE) rates between DNA DSB oocytes and untreated oocytes. Employing live cell imaging and immunofluorescence labeling, we observed the dynamics of DNA fragments during oocyte maturation. We also determined the cyclin B1 expression pattern in oocytes to analyze spindle assembly checkpoint (SAC) activity in DNA DSB oocytes. We used parthenogenetic activation to determine if the DNA DSB oocytes could be activated. As a result, we found that the BLM- or LMD-induced DSB oocytes showed lower GVBD rates and took a longer time to undergo GVBD compared with untreated oocytes. PBE was also delayed in DSB oocytes, but once GVBD had occurred, PBE was not affected, even in oocytes with severe DSBs. Compared with control oocytes, the DSB oocytes showed higher SAC activity, as indicated by less Ccnb1-GFP degradation during metaphase I to anaphase I transition. Parthenogenetic activation could activate the metaphase to interphase transition in the DNA DSB mature oocytes, but many oocytes contained multiple pronuclei or numerous micronuclei. These data suggest that DNA damage inhibits or delays the G2/M transition, but once GVBD occurs, DNA-damaged oocytes can complete chromosome separation and polar body extrusion even under a higher SAC activity, causing the formation of numerous micronuclei in early embryos.


Cell Cycle | 2013

Maternal factors required for oocyte developmental competence in mice: Transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes

Jun-Yu Ma; Mo Li; Yi-Bo Luo; Shuhui Song; Dongmei Tian; Jin Yang; Bing Zhang; Yi Hou; Heide Schatten; Zhonghua Liu; Qing-Yuan Sun

During mouse antral follicle development, the oocyte chromatin gradually transforms from a less condensed state with no Hoechst-positive rim surrounding the nucleolus (NSN) to a fully condensed chromatin state with a Hoechst-positive rim surrounding the nucleolus (SN). Compared with SN oocytes, NSN oocytes display a higher gene transcription activity and a lower rate of meiosis resumption (G2/M transition), and they are mostly arrested at the two-cell stage after in vitro fertilization. To explore the differences between NSN and SN oocytes, and the maternal factors required for oocyte developmental competence, we compared the whole-transcriptome profiles between NSN and SN oocytes. First, we found that the NSN and SN oocytes were different in their metabolic pathways. In the phosphatidylinositol signaling pathway, the SN oocytes tend to produce diacylglycerol, whereas the NSN oocytes tend to produce phosphatidylinositol (3,4,5)-trisphosphate. For energy production, the SN oocytes and NSN oocytes differed in the gluconeogenesis and in the synthesis processes. Second, we also found that the key genes associated with oocyte meiosis and/or preimplantation embryo development were differently expressed in the NSN and SN oocytes. Our results illustrate that during the NSN-SN transition, the oocytes change their metabolic activities and accumulate maternal factors for further oocyte maturation and post-fertilization embryo development.


Cell Cycle | 2011

GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte

Chun-Hui Zhang; Zhen-Bo Wang; Song Quan; Xin Huang; Jing-Shan Tong; Jun-Yu Ma; Lei Guo; Yanchang Wei; Ying-Chun Ouyang; Yi Hou; Fu-Qi Xing; Qing-Yuan Sun

GM130, a cis-Golgi protein, plays key roles in various mitotic events, but its function in mammalian oocyte meiosis remains unknown. In this study, we found that GM130 was localized to the spindle poles at both metaphase I and metaphase II stages and associated with the midbody at telophase I stage. The association of GM130 with spindle poles was further confirmed by its colocalization with the centrosome-associated proteins, MEK1/2. By nocodazole treatment, we clarified that GM130 localization was consistently dependent on spindle assembly. Then we investigated the possible function of GM130 by specific morpholino microinjection. This treatment caused abnormal spindle formation, and decreased first polar body extrusion. Our results showed that knockdown of GM130 impaired the localization of MTOCs proteins γ-tubulin and Plk1. Using live cell imaging we observed that depletion of GM130 affected spindle migration and resulted in elongated spindle and large polar body extrusion. We further found that depletion of GM130 blocked p-MEK1/2 accumulation at the spindle poles. And, it was shown that GM130 detached from the spindle poles in oocytes treated with MEK specific inhibitor U0126. Taken together, our results suggested that GM130 regulates microtubule organization and might cooperate with the MAPK pathway to play roles in spindle organization, migration and asymmetric division during mouse oocyte maturation.


Molecular Human Reproduction | 2012

Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives

Jun-Yu Ma; Xing-Wei Liang; Heide Schatten; Qing-Yuan Sun

DNA methylation and demethylation are crucial for modulating gene expression and regulating cell differentiation. Functions and mechanisms of DNA methylation/demethylation in mammalian embryos are still far from being understood clearly. In this review we firstly describe new insights into DNA demethylation mechanisms, and secondly introduce the differences in active DNA methylation patterns in zygotes and early embryos in various mammalian species. Thirdly, we attempt to clarify the functions of DNA demethylation in early embryos. Most importantly we summarize the importance of active DNA demethylation and its possible relevance to human IVF clinics. Finally research perspectives regarding DNA demethylation are also discussed.


Cell Cycle | 2013

Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos

Zhong-Wei Wang; Xue-Shan Ma; Jun-Yu Ma; Yi-Bo Luo; Fei Lin; Zhen-Bo Wang; Heng-Yu Fan; Heide Schatten; Qing-Yuan Sun

DNA double-strand breaks are caused by both intracellular physiological processes and environmental stress. In this study, we used laser microbeam cut (abbreviated microcut or cut), which allows specific DNA damage in the pronucleus of a fertilized egg and in individual blastomere(s) of an early embryo, to investigate the response of early embryos to DNA double-strand breaks. Line type γH2AX foci were detected in the cut region, while Chk2 phosphorylation staining was observed in the whole nuclear region of the cut pronuclei or blastomeres. Zygotes with cut male or female pronucleus showed poor developmental capability: the percentage of cleavage embryos was significantly decreased, and the embryos failed to complete further development to blastocysts. The cut blastomeres in 2-cell, 4-cell, and 8-cell embryos ceased cleavage, and they failed to incorporate into compacted morulae, but instead underwent apoptosis and cell death at the blastocyst stage; the uncut part of embryos could develop to blastocysts, with a reduced percentage or decreased cell number. When both blastomeres of the 2-cell embryos were cut by laser microbeam, cell death occurred 24 h earlier, suggesting important functions of the uncut blastomere in delaying cell death of the cut blastomere. Taken together, we conclude that microbeam-induced DNA damage in early embryos causes compromised development, and that embryos may have their own mechanisms to exclude DNA-damaged blastomeres from participating in further development.


Science China-life Sciences | 2012

Epigenetic changes associated with oocyte aging.

Xing-Wei Liang; Jun-Yu Ma; Heide Schatten; Qing-Yuan Sun

It is well established that the decline in female reproductive outcomes is related to postovulatory aging of oocytes and advanced maternal age. Poor oocyte quality is correlated with compromised genetic integrity and epigenetic changes during the oocyte aging process. Here, we review the epigenetic alterations, mainly focused on DNA methylation, histone acetylation and methylation associated with postovulatory oocyte aging as well as advanced maternal age. Furthermore, we address the underlying epigenetic mechanisms that contribute to the decline in oocyte quality during oocyte aging.


PLOS ONE | 2012

Whole Transcriptome Analysis of the Effects of Type I Diabetes on Mouse Oocytes

Jun-Yu Ma; Mo Li; Zhao-Jia Ge; Yi-Bo Luo; Xiang-Hong Ou; Shuhui Song; Dongmei Tian; Jin Yang; Bing Zhang; Ying-Chun Ouyang; Yi Hou; Zhonghua Liu; Heide Schatten; Qing-Yuan Sun

In mouse ovarian follicles, granulosa cells but not oocytes take up glucose to provide the oocyte with nourishments for energy metabolism. Diabetes-induced hyperglycemia or glucose absorption inefficiency consistently causes granulosa cell apoptosis and further exerts a series of negative impacts on oocytes including reduced meiosis resumption rate, low oocyte quality and preimplantation embryo degeneration. Here we compared the transcriptome of mouse oocytes from genetically derived NOD diabetic mice or chemically induced STZ diabetic mice with that of corresponding normal mice. Differentially expressed genes were extracted from the two diabetic models. Gene set enrichment analysis showed that genes associated with metabolic and developmental processes were differentially expressed in oocytes from both models of diabetes. In addition, NOD diabetes also affected the expression of genes associated with ovulation, cell cycle progression, and preimplantation embryo development. Notably, Dnmt1 expression was significantly down-regulated, but Mbd3 expression was up-regulated in diabetic mouse oocytes. Our data not only revealed the mechanisms by which diabetes affects oocyte quality and preimplantation embryo development, but also linked epigenetic hereditary factors with metabolic disorders in germ cells.


Histochemistry and Cell Biology | 2014

Effects of DNA damage and short-term spindle disruption on oocyte meiotic maturation

Tao Zhang; G. L. Zhang; Jun-Yu Ma; Shu-Tao Qi; Zhen Bo Wang; Zhong-Wei Wang; Yi-Bo Luo; Zong-Zhe Jiang; Heide Schatten; Qing-Yuan Sun

DNA damage has recently been shown to inhibit or delay germinal vesicle breakdown (GVBD) in mouse oocytes, but once meiosis resumes, DNA-damaged oocytes are able to extrude the first polar body. In this study, using porcine oocytes, we showed that DNA damage did not affect GVBD, but inhibited the final stages of maturation, as indicated by failure of polar body emission. Unlike mitotic cells in which chromosome mis-segregation causes DNA double-strand breaks, meiotic mouse oocytes did not show increased DNA damage after disruption of chromosome attachment to spindle microtubules. Nocodazole-treated oocytes did not display increased DNA damage signals that were marked by γH2A.X signal strength, but reformed spindles and underwent maturation, although aneuploidy increased after extended nocodazole treatment. By using the mouse for parthenogenetic activation studies, we showed that early cleavage stage embryos derived from parthenogenetic activation of nocodazole-treated oocytes displayed normal activation rate and normal γH2A.X signal strength, indicating that no additional DNA damage occured. Our results suggest that DNA damage inhibits porcine oocyte maturation, while nocodazole-induced dissociation between chromosomes and microtubules does not lead to increased DNA damage either in mouse meiotic oocytes or in porcine oocytes.


Biology of Reproduction | 2013

Cyclin O Regulates Germinal Vesicle Breakdown in Mouse Oocytes

Jun-Yu Ma; Ying-Chun Ouyang; Yi-Bo Luo; Zhen-Bo Wang; Yi Hou; Zhiming Han; Zhonghua Liu; Heide Schatten; Qing-Yuan Sun

ABSTRACT It is well accepted that oocyte meiotic resumption is mainly regulated by the maturation-promoting factor (MPF), which is composed of cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDC2). Maturation-promoting factor activity is regulated by the expression level of CCNB1, phosphorylation of CDC2, and their germinal vesicle (GV) localization. In addition to CCNB1, cyclin O (CCNO) is highly expressed in oocytes, but its biological functions are still not clear. By employing short interfering RNA microinjection of GV-stage oocytes, we found that Ccno knockdown inhibited CDC2 (Tyr15) dephosphorylation and arrested oocytes at the GV stage. To rescue meiotic resumption, cell division cycle 25 B kinase (Cdc25b) and Ccnb1 were overexpressed in the Ccno knockdown oocytes. Unexpectedly, we found that Ccno knockdown did not affect CDC25B entry into the GV, and overexpression of CDC25B was not able to rescue resumption of oocyte meiosis. However, GV breakdown (GVBD) was significantly increased after overexpression of Ccnb1 in Ccno knockdown oocytes, indicating that GVBD block caused by cyclin O knockdown can be rescued by cyclin B1 overexpression. We thus conclude that cyclin O, as an upstream regulator of MPF, plays an important role in oocyte meiotic resumption in mouse oocytes.

Collaboration


Dive into the Jun-Yu Ma's collaboration.

Top Co-Authors

Avatar

Qing-Yuan Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Bo Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying-Chun Ouyang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen-Bo Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhonghua Liu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mo Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhong-Wei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bing Zhang

Beijing Institute of Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge