Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Z.P. Luo is active.

Publication


Featured researches published by Z.P. Luo.


Science | 2017

Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

Yue Shen; Yun Wang; Tai Chen; Feng Gao; Jianhui Gong; Dariusz Abramczyk; Roy Walker; Hongcui Zhao; Shihong Chen; Wei Liu; Carolin A. Müller; Adrien Paul-Dubois-Taine; Bonnie Alver; Giovanni Stracquadanio; Leslie A. Mitchell; Z.P. Luo; Yanqun Fan; Baojin Zhou; Bo Wen; Fengji Tan; Yujia Wang; Jin Zi; Zexiong Xie; Bingzhi Li; Kun Yang; Sarah M. Richardson; Hui Jiang; Christopher E. French; Conrad A. Nieduszynski; Romain Koszul

INTRODUCTION Although much effort has been devoted to studying yeast in the past few decades, our understanding of this model organism is still limited. Rapidly developing DNA synthesis techniques have made a “build-to-understand” approach feasible to reengineer on the genome scale. Here, we report on the completion of a 770-kilobase synthetic yeast chromosome II (synII). SynII was characterized using extensive Trans-Omics tests. Despite considerable sequence alterations, synII is virtually indistinguishable from wild type. However, an up-regulation of translational machinery was observed and can be reversed by restoring the transfer RNA (tRNA) gene copy number. RATIONALE Following the “design-build-test-debug” working loop, synII was successfully designed and constructed in vivo. Extensive Trans-Omics tests were conducted, including phenomics, transcriptomics, proteomics, metabolomics, chromosome segregation, and replication analyses. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium. RESULTS To efficiently construct megabase-long chromosomes, we developed an I-SceI–mediated strategy, which enables parallel integration of synthetic chromosome arms and reduced the overall integration time by 50% for synII. An I-SceI site is introduced for generating a double-strand break to promote targeted homologous recombination during mitotic growth. Despite hundreds of modifications introduced, there are still regions sharing substantial sequence similarity that might lead to undesirable meiotic recombinations when intercrossing the two semisynthetic chromosome arm strains. Induction of the I-SceI–mediated double-strand break is otherwise lethal and thus introduced a strong selective pressure for targeted homologous recombination. Since our strategy is designed to generate a markerless synII and leave the URA3 marker on the wild-type chromosome, we observed a tenfold increase in URA3-deficient colonies upon I-SceI induction, meaning that our strategy can greatly bias the crossover events toward the designated regions. By incorporating comprehensive phenotyping approaches at multiple levels, we demonstrated that synII was capable of powering the growth of yeast indistinguishably from wild-type cells (see the figure), showing highly consistent biological processes comparable to the native strain. Meanwhile, we also noticed modest but potentially significant up-regulation of the translational machinery. The main alteration underlying this change in expression is the deletion of 13 tRNA genes. A growth defect was observed in one very specific condition—high temperature (37°C) in medium with glycerol as a carbon source—where colony size was reduced significantly. We targeted and debugged this defect by two distinct approaches. The first approach involved phenotype screening of all intermediate strains followed by a complementation assay with wild-type sequences in the synthetic strain. By doing so, we identified a modification resulting from PCRTag recoding in TSC10, which is involved in regulation of the yeast high-osmolarity glycerol (HOG) response pathway. After replacement with wild-type TSC10, the defect was greatly mitigated. The other approach, debugging by SCRaMbLE, showed rearrangements in regions containing HOG regulation genes. Both approaches indicated that the defect is related to HOG response dysregulation. Thus, the phenotypic defect can be pinpointed and debugged through multiple alternative routes in the complex cellular interactome network. CONCLUSION We have demonstrated that synII segregates, replicates, and functions in a highly similar fashion compared with its wild-type counterpart. Furthermore, we believe that the iterative “design-build-test-debug” cycle methodology, established here, will facilitate progression of the Sc2.0 project in the face of the increasing synthetic genome complexity. SynII characterization. (A) Cell cycle comparison between synII and BY4741 revealed by the percentage of cells with separated CEN2-GFP dots, metaphase spindles, and anaphase spindles. (B) Replication profiling of synII (red) and BY4741 (black) expressed as relative copy number by deep sequencing


Science | 2017

Engineering the ribosomal DNA in a megabase synthetic chromosome

Weimin Zhang; Guanghou Zhao; Z.P. Luo; Yicong Lin; Lihui Wang; Yakun Guo; Ann Wang; Shuangying Jiang; Qingwen Jiang; Jianhui Gong; Yun Wang; Sha Hou; Jing Huang; Tianyi Li; Yiran Qin; Junkai Dong; Qin Qin; Jiaying Zhang; Xinzhi Zou; Xi He; Li Zhao; Yibo Xiao; Meng Xu; Erchao Cheng; Ning Huang; Tong Zhou; Yue Shen; Roy Walker; Zheng Kuang; Leslie A. Mitchell

INTRODUCTION It has long been an interesting question whether a living cell can be constructed from scratch in the lab, a goal that may not be realized anytime soon. Nonetheless, with advances in DNA synthesis technology, the complete genetic material of an organism can now be synthesized chemically. Hitherto, genomes of several organisms including viruses, phages, and bacteria have been designed and constructed. These synthetic genomes are able to direct all normal biological functions, capable of self-replication and production of offspring. Several years ago, a group of scientists worldwide formed an international consortium to reconstruct the genome of budding yeast, Saccharomyces cerevisiae. RATIONALE The synthetic yeast genome, designated Sc2.0, was designed according to a set of arbitrary rules, including the elimination of transposable elements and incorporation of specific DNA elements to facilitate further genome manipulation. Among the 16 S. cerevisiae chromosomes, chromosome XII is unique as one of the longest yeast chromosomes (~1 million base pairs) and additionally encodes the highly repetitive ribosomal DNA locus, which forms the well-organized nucleolus. We report on the design, construction, and characterization of chromosome XII, the physically largest chromosome in S. cerevisiae. RESULTS A 976,067–base pair linear chromosome, synXII, was designed based on the native chromosome XII sequence of S. cerevisiae, and chemically synthesized. SynXII was assembled using a two-step method involving, successive megachunk integration to produce six semisynthetic strains, followed by meiotic recombination–mediated assembly, yielding a full-length functional chromosome in S. cerevisiae. Minor growth defect “bugs” detected in synXII were caused by deletion of tRNA genes and were corrected by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit. The same synthetic rDNA unit was also used to regenerate rDNA at three distinct chromosomal locations. The rDNA signature sequences of the internal transcribed spacer (ITS), often used to determine species identity by standard DNA barcoding procedures, were swapped to generate a Saccharomyces synXII strain that would be identified as S. bayanus. Remarkably, these substantial DNA changes had no detectable phenotypic consequences under various laboratory conditions. CONCLUSION The rDNA locus of synXII is highly plastic; not only can it be moved to other chromosomal loci, it can also be altered in its ITS region to masquerade as a distinct species as defined by DNA barcoding, used widely in taxonomy. The ability to perform “species morphing” reported here presumably reflects the degree of evolutionary flexibility by which these ITS regions change. However, this barcoding region is clearly not infinitely flexible, as only relatively modest intragenus base changes were tolerated. More severe intergenus differences in ITS sequence did not result in functional rDNAs, probably because of defects in rRNA processing. The ability to design, build, and debug a megabase-sized chromosome, together with the flexibility in rDNA locus position, speaks to the remarkable overall flexibility of the yeast genome. Hierarchical assembly and subsequent restructuring of synXII. SynXII was assembled in two steps: First, six semisynthetic synXII strains were built in which segments of native XII DNA were replaced with the corresponding designer sequences. Next, the semisynthetic strains were combined withmultiple rounds ofmating/sporulation, eventually generating a single strain encoding fulllength synXII.The rDNA repeats were removed, modified, and subsequently regenerated at distinct chromosomal locations for species morphing and genome restructuring. We designed and synthesized a 976,067–base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae. SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect “bugs” detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.


Science | 2017

3D organization of synthetic and scrambled chromosomes

Guillaume Mercy; Julien Mozziconacci; Vittore F. Scolari; Kun Yang; Guanghou Zhao; Agnès Thierry; Leslie A. Mitchell; Michael M. Shen; Yue Shen; Roy Walker; Weimin Zhang; Yi Wu; Ze Xiong Xie; Z.P. Luo; Yizhi Cai; Junbiao Dai; Huanming Yang; Ying-Jin Yuan; Jef D. Boeke; Joel S. Bader; Héloïse Muller; Romain Koszul

INTRODUCTION The overall organization of budding yeast chromosomes is driven and regulated by four factors: (i) the tethering and clustering of centromeres at the spindle pole body; (ii) the loose tethering of telomeres at the nuclear envelope, where they form small, dynamic clusters; (iii) a single nucleolus in which the ribosomal DNA (rDNA) cluster is sequestered from other chromosomes; and (iv) chromosomal arm lengths. Hi-C, a genomic derivative of the chromosome conformation capture approach, quantifies the proximity of all DNA segments present in the nuclei of a cell population, unveiling the average multiscale organization of chromosomes in the nuclear space. We exploited Hi-C to investigate the trajectories of synthetic chromosomes within the Saccharomyces cerevisiae nucleus and compare them with their native counterparts. RATIONALE The Sc2.0 genome design specifies strong conservation of gene content and arrangement with respect to the native chromosomal sequence. However, synthetic chromosomes incorporate thousands of designer changes, notably the removal of transfer RNA genes and repeated sequences such as transposons and subtelomeric repeats to enhance stability. They also carry loxPsym sites, allowing for inducible genome SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) aimed at accelerating genomic plasticity. Whether these changes affect chromosome organization, DNA metabolism, and fitness is a critical question for completion of the Sc2.0 project. To address these questions, we used Hi-C to characterize the organization of synthetic chromosomes. RESULTS Comparison of synthetic chromosomes with native counterparts revealed no substantial changes, showing that the redesigned sequences, and especially the removal of repeated sequences, had little or no effect on average chromosome trajectories. Sc2.0 synthetic chromosomes have Hi-C contact maps with much smoother contact patterns than those of native chromosomes, especially in subtelomeric regions. This improved “mappability” results directly from the removal of repeated elements all along the length of the synthetic chromosomes. These observations highlight a conceptual advance enabled by bottom-up chromosome synthesis, which allows refinement of experimental systems to make complex questions easier to address. Despite the overall similarity, differences were observed in two instances. First, deletion of the HML and HMR silent mating-type cassettes on chromosome III led to a loss of their specific interaction. Second, repositioning the large array of rDNA repeats nearer to the centromere cluster forced substantial genome-wide conformational changes—for instance, inserting the array in the middle of the small right arm of chromosome III split the arm into two noninteracting regions. The nucleolus structure was then trapped in the middle between small and large chromosome arms, imposing a physical barrier between them. In addition to describing the Sc2.0 chromosome organization, we also used Hi-C to identify chromosomal rearrangements resulting from SCRaMbLE experiments. Inducible recombination between the hundreds of loxPsym sites introduced into Sc2.0 chromosomes enables combinatorial rearrangements of the genome structure. Hi-C contact maps of two SCRaMbLE strains carrying synIII and synIXR chromosomes revealed a variety of cis events, including simple deletions, inversions, and duplications, as well as translocations, the latter event representing a class of trans SCRaMbLE rearrangements not previously observed. CONCLUSION This large data set is a resource that will be exploited in future studies exploring the power of the SCRaMbLE system. By investigating the trajectories of Sc2.0 chromosomes in the nuclear space, this work paves the way for future studies addressing the influence of genome-wide engineering approaches on essential features of living systems. Synthetic chromosome organization. (A) Hi-C contact maps of synII and native (wild-type, WT) chromosome II. Red arrowheads point to filtered bins (white vectors) that are only present in the native chromosome map. kb, kilobases. (B) Three-dimensional (3D) representations of Hi-C maps of strains carrying rDNA either on synXII or native chromosome III


Nature Communications | 2018

Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES

Z.P. Luo; Lihui Wang; Yun Wang; Weimin Zhang; Yakun Guo; Yue Shen; Linghuo Jiang; Qingyu Wu; Chong Zhang; Yizhi Cai; Junbiao Dai

SCRaMbLE is a novel system implemented in the synthetic yeast genome, enabling massive chromosome rearrangements to produce strains with a large genotypic diversity upon induction. Here we describe a reporter of SCRaMbLEd cells using efficient selection, termed ReSCuES, based on a loxP-mediated switch of two auxotrophic markers. We show that all randomly isolated clones contained rearrangements within the synthetic chromosome, demonstrating high efficiency of selection. Using ReSCuES, we illustrate the ability of SCRaMbLE to generate strains with increased tolerance to several stress factors, such as ethanol, heat and acetic acid. Furthermore, by analyzing the tolerant strains, we are able to identify ACE2, a transcription factor required for septum destruction after cytokinesis, as a negative regulator of ethanol tolerance. Collectively, this work not only establishes a generic platform to rapidly identify strains of interest by SCRaMbLE, but also provides methods to dissect the underlying mechanisms of resistance.The use of synthetic chromosomes and the recombinase-based SCRaMbLE system could enable rapid strain evolution through massive chromosome rearrangements. Here the authors present ReSCuES, which uses auxotrophic markers to rapidly identify yeast with rearrangements for strain engineering.


Nature Communications | 2018

Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods

Wei Liu; Z.P. Luo; Yun Wang; Nhan T. Pham; Laura R. Tuck; Irene Pérez-Pi; Longying Liu; Yue Shen; Christopher E. French; Manfred Auer; Jon Marles-Wright; Junbiao Dai; Yizhi Cai

Exogenous pathway optimization and chassis engineering are two crucial methods for heterologous pathway expression. The two methods are normally carried out step-wise and in a trial-and-error manner. Here we report a recombinase-based combinatorial method (termed “SCRaMbLE-in”) to tackle both challenges simultaneously. SCRaMbLE-in includes an in vitro recombinase toolkit to rapidly prototype and diversify gene expression at the pathway level and an in vivo genome reshuffling system to integrate assembled pathways into the synthetic yeast genome while combinatorially causing massive genome rearrangements in the host chassis. A set of loxP mutant pairs was identified to maximize the efficiency of the in vitro diversification. Exemplar pathways of β-carotene and violacein were successfully assembled, diversified, and integrated using this SCRaMbLE-in method. High-throughput sequencing was performed on selected engineered strains to reveal the resulting genotype-to-phenotype relationships. The SCRaMbLE-in method proves to be a rapid, efficient, and universal method to fast track the cycle of engineering biology.Pathway optimization and chassis engineering are usually carried out in a step-wise and trial-and-error manner. Here the authors present ’SCRaMbLE-in’ that combines in-vitro pathway rapid prototyping with in-vivo genome integration and optimization.


Proceedings of the National Academy of Sciences of the United States of America | 2017

2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae

Jing Huang; Z.P. Luo; Wantao Ying; Qichen Cao; He Huang; Junkai Dong; Qingyu Wu; Yingming Zhao; Xiaohong Qian; Junbiao Dai

Significance DNA–histone complexes are packed into the eukaryotic genome and fit into the nucleus of the cell. One mechanism to access the genetic information is to disrupt the complexes through posttranslational modification of histones. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8hib) was identified as an evolutionarily conserved active mark. However, how this modification is regulated and what are the enzymes to modulate this modification within a cell remain a mystery. In this study, we discover that this modification is regulated by the availability of a carbon source in Saccharomyces cerevisiae and identify the enzymes catalyzing the removal of this active mark in vivo. This discovery provides insight into the function and regulation of the histone mark H4K8hib. New types of modifications of histones keep emerging. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8hib) was identified as an evolutionarily conserved modification. However, how this modification is regulated within a cell is still elusive, and the enzymes adding and removing 2-hydroxyisobutyrylation have not been found. Here, we report that the amount of H4K8hib fluctuates in response to the availability of carbon source in Saccharomyces cerevisiae and that low-glucose conditions lead to diminished modification. The removal of the 2-hydroxyisobutyryl group from H4K8 is mediated by the histone lysine deacetylase Rpd3p and Hos3p in vivo. In addition, eliminating modifications at this site by alanine substitution alters transcription in carbon transport/metabolism genes and results in a reduced chronological life span (CLS). Furthermore, consistent with the glucose-responsive H4K8hib regulation, proteomic analysis revealed that a large set of proteins involved in glycolysis/gluconeogenesis are modified by lysine 2-hydroxyisobutyrylation. Cumulatively, these results established a functional and regulatory network among Khib, glucose metabolism, and CLS.


2017 IEEE Conference on Control Technology and Applications (CCTA) | 2017

On plasma vertical stabilization at EAST tokamak

G. De Tommasi; A. Mele; Z.P. Luo; A. Pironti; B.J. Xiao

In this paper we discuss the problem of plasma vertical stabilization at the EAST tokamak. By exploiting a plasma/circuit linearized model, we show that the plant cannot be strongly stabilized by using the in-vessel coils and a singleinput-single-output controller that feeds back only the plasma vertical speed żp (i.e. without integral action on żp). Moreover, a stable multi-input-single-output controller that stabilizes the plant without the need of feeding back the plasma vertical position is presented. The proposed solution permits to achieve stabilization of the EAST plant without coupling the vertical stabilization system with the plasma shape controller. Such decoupling is a key requirement to enable advanced design approaches for plasma shape controller.


Cell Research | 2018

Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway

He Huang; Z.P. Luo; Shankang Qi; Jing Huang; Peng Xu; Xiuxuan Wang; Li Gao; Fangyi Li; Jian Wang; Wenhui Zhao; Wei Gu; Zhucheng Chen; Lunzhi Dai; Junbiao Dai; Yingming Zhao

Short-chain fatty acids and their corresponding acyl-CoAs sit at the crossroads of metabolic pathways and play important roles in diverse cellular processes. They are also precursors for protein post-translational lysine acylation modifications. A noteworthy example is the newly identified lysine 2-hydroxyisobutyrylation (Khib) that is derived from 2-hydroxyisobutyrate and 2-hydroxyisobutyryl-CoA. Histone Khib has been shown to be associated with active gene expression in spermatogenic cells. However, the key elements that regulate this post-translational lysine acylation pathway remain unknown. This has hindered characterization of the mechanisms by which this modification exerts its biological functions. Here we show that Esa1p in budding yeast and its homologue Tip60 in human could add Khib to substrate proteins both in vitro and in vivo. In addition, we have identified HDAC2 and HDAC3 as the major enzymes to remove Khib. Moreover, we report the first global profiling of Khib proteome in mammalian cells, identifying 6 548 Khib sites on 1 725 substrate proteins. Our study has thus discovered both the “writers” and “erasers” for histone Khib marks, and major Khib protein substrates. These results not only illustrate the landscape of this new lysine acylation pathway, but also open new avenues for studying diverse functions of cellular metabolites associated with this pathway.


Fusion Engineering and Design | 2012

Recent plasma control progress on EAST

Baihua Xiao; Q.P. Yuan; D.A. Humphreys; M.L. Walker; A.W. Hyatt; J.A. Leuer; G.L. Jackson; D. Mueller; B.G. Penaflor; D.A. Pigrowski; R.D. Johnson; A.S. Welander; Ruili Zhang; Z.P. Luo; Yu-Guo Guo; Z. Xing; Y. Zhang


Fusion Engineering and Design | 2016

Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST

Yao Huang; B.J. Xiao; Z.P. Luo; Q.P. Yuan; X.F. Pei; X.N. Yue

Collaboration


Dive into the Z.P. Luo's collaboration.

Top Co-Authors

Avatar

B.J. Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Q.P. Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

R. Ambrosino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Shen

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Yu-Guo Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yun Wang

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Baihua Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge