Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung Jun Bae is active.

Publication


Featured researches published by Jung Jun Bae.


Nano Letters | 2011

Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth

Gang Hee Han; Fethullah Güneş; Jung Jun Bae; Eun Sung Kim; Seung Jin Chae; Hyeon-Jin Shin; Jae-Young Choi; Didier Pribat; Young Hee Lee

We report that highly crystalline graphene can be obtained from well-controlled surface morphology of the copper substrate. Flat copper surface was prepared by using a chemical mechanical polishing method. At early growth stage, the density of graphene nucleation seeds from polished Cu film was much lower and the domain sizes of graphene flakes were larger than those from unpolished Cu film. At later growth stage, these domains were stitched together to form monolayer graphene, where the orientation of each domain crystal was unexpectedly not much different from each other. We also found that grain boundaries and intentionally formed scratched area play an important role for nucleation seeds. Although the best monolayer graphene was grown from polished Cu with a low sheet resistance of 260 Ω/sq, a small portion of multilayers were also formed near the impurity particles or locally protruded parts.


Nature Materials | 2013

Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors

Sang Hoon Chae; Woo Jong Yu; Jung Jun Bae; Dinh Loc Duong; David Perello; Hye Yun Jeong; Quang Huy Ta; Thuc Hue Ly; Quoc An Vu; Minhee Yun; Xiangfeng Duan; Young Hee Lee

Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10(-13) A. The resulting devices exhibited an excellent on/off ratio of ~10(5), a high mobility of ~40 cm(2) V(-1) s(-1) and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.


Journal of the American Chemical Society | 2008

Fermi Level Engineering of Single-Walled Carbon Nanotubes by AuCl3 Doping

Ki Kang Kim; Jung Jun Bae; Hyeon Ki Park; Soo Min Kim; Hong-Zhang Geng; Kyung Ah Park; Hyeon-Jin Shin; Seon-Mi Yoon; Anass Benayad; Jae-Young Choi; Young Hee Lee

We investigated the modulation of optical properties of single-walled carbon nanotubes (SWCNTs) by AuCl 3 doping. The van Hove singularity transitions (E 11 (S), E 22 (S), E 11 (M)) in absorption spectroscopy disappeared gradually with an increasing doping concentration and a new peak appeared at a high doping concentration. The work function was downshifted up to 0.42 eV by a strong charge transfer from the SWCNTs to AuCl 3 by a high level of p-doping. We propose that this large work function shift forces the Fermi level of the SWCNTs to be located deep in the valence band, i.e., highly degenerate, creating empty van Hove singularity states, and hence the work function shift invokes a new asymmetric transition in the absorption spectroscopy from a deeper level to newly generated empty states.


Journal of the American Chemical Society | 2009

Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes

Soo Min Kim; Jin Ho Jang; Ki Kang Kim; Hyeon Ki Park; Jung Jun Bae; Woo Jong Yu; Il Ha Lee; Gunn Kim; Duong Dinh Loc; Un Jeong Kim; Eun-Hong Lee; Hyeon-Jin Shin; Jae-Young Choi; Young Hee Lee

Various viologens have been used to control the doping of single-walled carbon nanotubes (SWCNTs) via direct redox reactions. A new method of extracting neutral viologen (V(0)) was introduced using a biphase of toluene and viologen-dissolved water. A reductant of sodium borohydride transferred positively charged viologen (V(2+)) into V(0), where the reduced V(0) was separated into toluene with high separation yield. This separated V(0) solution was dropped on carbon nanotube transistors to investigate the doping effect of CNTs. With a viologen concentration of 3 mM, all the p-type CNT transistors were converted to n-type with improved on/off ratios. This was achieved by donating electrons spontaneously to CNTs from neutral V(0), leaving energetically stable V(2+) on the nanotube surface again. The doped CNTs were stable in water due to the presence of hydrophobic V(0) at the outermost CNT transistors, which may act as a protecting layer to prevent further oxidation from water.


ACS Nano | 2012

Synthesis of Multilayer Graphene Balls by Carbon Segregation from Nickel Nanoparticles

Seon-Mi Yoon; Won Mook Choi; Hionsuck Baik; Hyeon-Jin Shin; In-Yong Song; Moon-Seok Kwon; Jung Jun Bae; Hansu Kim; Young Hee Lee; Jae-Young Choi

Three-dimensional (3D) structured graphene is a material of great interest due to its diverse applications in electronics, catalytic electrodes, and sensors. However, the preparation of 3D structured graphene is still challenging. Here, we report the fabrication of multilayer graphene balls (GBs) by template-directed carbon segregation using nickel nanoparticles (Ni-NPs) as template materials. To maintain the ball shape of the template Ni-NPs, we used a carburization process using polyol solution as the carbon source and a thermal annealing process to synthesize graphene layers via carbon segregation on the outer surface of the Ni-NPs. The resulting GBs were hollow structures composed of multilayer graphene after the removal of core Ni-NPs, and the thickness of the graphene layers and the size of GBs were tunable by controlling the graphene synthesis conditions. X-ray diffraction analysis and in situ transmission electron microscope characterization revealed that carbon atoms diffused effectively into the Ni-NPs during the carburization step, and that the diffused carbon atoms in Ni-NPs segregated and successfully formed a graphene layer on the surface of the Ni-NPs during thermal annealing. We also performed further heat treatment at high temperature to improve the quality of the graphene layer, resulting in highly crystalline GBs. The unique hollow GBs synthesized here will be useful as excellent high-rate electrode materials for electrochemical lithium storage devices.


Advanced Materials | 2011

Graphene/carbon nanotube hybrid-based transparent 2D optical array.

Un Jeong Kim; Il Ha Lee; Jung Jun Bae; Sang Jin Lee; Gang Hee Han; Seung Jin Chae; Fethullah Güneş; Jun Hee Choi; Chan Wook Baik; Sun Il Kim; Jong Min Kim; Young Hee Lee

Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth. Highly aligned single-walled CNTs show a better performance for the diffraction intensity.


Scientific Reports | 2015

Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries

Bing Li; Fei Yao; Jung Jun Bae; Jian Chang; Mihai Robert Zamfir; Duc Toan Le; Duy Tho Pham; Hongyan Yue; Young Hee Lee

Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure holds the robust surface-to-surface contact between Si and CNSs, which facilitates the fast electron transport. As a consequence, the electrode exhibits high specific capacity and remarkable capacity retention simultaneously: 1560 mA h g−1 after 100 cycles at a current density of 1 A g−1 with the capacity retention of 85% and an average decay rate of 0.16% per cycle. The superior battery properties are further confirmed by cyclic voltammetry (CV) and impedance measurement.


New Journal of Chemistry | 2010

Doping strategy of carbon nanotubes with redox chemistry

Ki Kang Kim; Seon-Mi Yoon; Hyeon Ki Park; Hyeon-Jin Shin; Soo Min Kim; Jung Jun Bae; Yan Cui; Jong Min Kim; Jae-Young Choi; Young Hee Lee

The chemical doping of single-walled carbon nanotubes (SWCNTs) has been an important issue in tailoring the electronic structures of SWCNTs. This paper proposes a strategy for controlling the doping types and doping concentrations by choosing the reduction potential of a dopant relative to the redox potential of SWCNTs. For this purpose, the redox potential plot in terms of the chirality and diameter was generated based on theoretical calculations, which were in good agreement with the experimental data obtained from individually separated SWCNTs. The change in the electronic structures of the SWCNTs with the various dopants was clearly observed by absorption and Raman spectroscopy, and was explained well by the redox potential argument. This principle was tested further by fabricating transparent conducting films followed by doping. Doping with Au3+ resulted in a sheet resistance of 100 Ω sq−1 at 90% transmittance. This SWCNT doping strategy for both n-type and p-type materials can be generalized to a wide range of nanostructures, such as nanowires and nanoparticles.


Scientific Reports | 2013

TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor

Arunabha Ghosh; Viet Thong Le; Jung Jun Bae; Young Hee Lee

Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs−1 scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model.


ACS Nano | 2016

Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy

Hye Min Oh; Gang Hee Han; Hyun Kim; Jung Jun Bae; Mun Seok Jeong; Young Hee Lee

Photoluminescence (PL) from monolayer MoS2 has been modulated using plasma treatment or thermal annealing. However, a systematic way of understanding the underlying PL modulation mechanism has not yet been achieved. By introducing PL and Raman spectroscopy, we analyze that the PL modulation by laser irradiation is associated with structural damage and associated oxygen adsorption on the sample in ambient conditions. Three distinct behaviors were observed according to the laser irradiation time: (i) slow photo-oxidation at the initial stage, where the physisorption of ambient gases gradually increases the PL intensity; (ii) fast photo-oxidation at a later stage, where chemisorption increases the PL intensity abruptly; and (iii) photoquenching, with complete reduction of PL intensity. The correlated confocal Raman spectroscopy confirms that no structural deformation is involved in slow photo-oxidation stage; however, the structural disorder is invoked during the fast photo-oxidation stage, and severe structural degradation is generated during the photoquenching stage. The effect of oxidation is further verified by repeating experiments in vacuum, where the PL intensity is simply degraded with laser irradiation in a vacuum due to a simple structural degradation without involving oxygen functional groups. The charge scattering by oxidation is further explained by the emergence/disappearance of neutral excitons and multiexcitons during each stage.

Collaboration


Dive into the Jung Jun Bae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Hee Han

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Sung Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge