Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jurek Brzeski is active.

Publication


Featured researches published by Jurek Brzeski.


Proceedings of SPIE | 2004

Echidna: the engineering challenges

Jurek Brzeski; Peter Gillingham; David Correll; J. M. Dawson; Anna M. Moore; Rolf Müller; Scott Smedley; Greg Smith

The Anglo-Australian Observatorys (AAOs) FMOS-Echidna project is for the Fiber Multi-Object Spectroscopy system for the Subaru Telescope. It includes three parts: the 400-fiber positioning system, the focal plane imager (FPI) and the prime focus corrector. The Echidna positioner concept and the role of the AAO in the FMOS project have been described in previous SPIE proceedings. The many components for the system are now being manufactured, after prototype tests have demonstrated that the required performance will be achieved. In this paper, the techniques developed to overcome key mechanical and electronic engineering challenges for the positioner and the FPI are described. The major performance requirement is that all 400 science fiber cores and up to 14 guide fiber bundles are to be re-positioned to an accuracy of 10μm within 10 minutes. With the fast prime focus focal ratio, a close tolerance on the axial position of the fiber tips must also be held so efficiency does not suffer from de-focus. Positioning accuracy is controlled with the help of the FPI, which measures the positions of the fiber tips to an accuracy of a few μm and allows iterative positioning. Maintaining fiber tips sufficiently co-planar requires accurate control in the assembly of the several components that contribute to such errors. Assembly jigs have been developed and proven adequate for this purpose. Attaining high reliability in an assembly with many small components of disparate materials bonded together, including piezo ceramics, carbon fiber reinforced plastic, hardened steel, and electrical circuit boards, has entailed careful selection and application of cements and tightly controlled soldering for electrical connections.


Proceedings of SPIE | 2010

HERMES: revisions in the design for a high-resolution multi-element spectrograph for the AAT

Samuelk C. Barden; Damien Jones; Stuart I. Barnes; Jeroen Heijmans; Anthony Heng; Greg Knight; David Orr; Greg Smith; Vladimir Churilov; Jurek Brzeski; Lewis Waller; Keith Shortridge; Anthony Horton; Roger Haynes; Dionne M. Haynes; Denis Whittard; Michael Goodwin; Scott Smedley; Ian Saunders; Peter Gillingham; Ed Penny; Tony Farrell; Minh Vuong; Ron Heald; Steve Lee; Rolf Müller; Kenneth C. Freeman; Joss Bland-Hawthorn; Daniel F. Zucker; Gayandhi De Silva

The AAO is building an optical high resolution multi-object spectrograph for the AAT for Galactic Archaeology. The instrument has undergone significant design revision over that presented at the 2008 Marseilles SPIE meeting. The current design is a 4-channel VPH-grating based spectrograph providing a nominal spectral resolving power of 28,000 and a high-resolution mode of 45,000 with the use of a slit mask. The total spectral coverage is about 1000 Angstroms for up to 392 simultaneous targets within the 2 degree field of view. Major challenges in the design include the mechanical stability, grating and dichroic efficiencies, and fibre slit relay implementation. An overview of the current design and discussion of these challenges is presented.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

First light results from the High Efficiency and Resolution Multi-Element Spectrograph at the Anglo-Australian Telescope

Andrew Sheinis; Borja Anguiano Jimenez; Martin Asplund; Carlos Bacigalupo; Samuel C. Barden; Michael N. Birchall; Joss Bland-Hawthorn; Jurek Brzeski; Russell D. Cannon; Daniela Carollo; Scott W. Case; Andrew R. Casey; Vladimir Churilov; Warrick J. Couch; Robert Dean; Gayandhi De Silva; V. D’Orazi; Ly Duong; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Gabriella Frost; Luke Gers; Michael Goodwin; Doug Gray; Andrew W. Green; Ron Heald; Jeroen Heijmans; Michael J. Ireland; Damien Jones

Abstract. The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.


Proceedings of SPIE | 2012

MOHAWK: a 4000-fiber positioner for DESpec

Will Saunders; Greg Smith; James Gilbert; Rolf Müller; Michael Goodwin; Nick Staszak; Jurek Brzeski; Stan Miziarski; Matthew Colless

We present a concept for a 4000-fibre positioner for DESpec, based on the Echidna ‘tilting spine’ technology. The DESpec focal plane is 450mm across and curved, and the required pitch is ~6.75mm. The size, number of fibers and curvature are all comparable with various concept studies for similar instruments already undertaken at the AAO, but present new challenges in combination. A simple, low-cost, and highly modular design is presented, consisting of identical modules populated by identical spines. No show-stopping issues in accommodating either the curvature or the smaller pitch have been identified, and the actuators consist largely of off-the-shelf components. The actuators have been prototyped at AAO, and allow reconfiguration times of ~15s to reach position errors 7 microns or less. Straightforward designs for metrology, acquisition, and guiding are also proposed. The throughput losses of the entire positioner system are estimated to be ~15%, of which 6.3% is attributable to the tilting-spine technology.


Proceedings of SPIE | 2012

Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy

Jon Lawrence; Joss Bland-Hawthorn; Julia J. Bryant; Jurek Brzeski; Matthew Colless; Scott M. Croom; Luke Gers; James Gilbert; Peter Gillingham; Michael Goodwin; Jeroen Heijmans; Anthony Horton; Mike Ireland; Stan Miziarski; Will Saunders; Greg Smith

First light from the SAMI (Sydney-AAO Multi-object IFS) instrument at the Anglo-Australian Telescope (AAT) has recently proven the viability of fibre hexabundles for multi-IFU spectroscopy. SAMI, which comprises 13 hexabundle IFUs deployable over a 1 degree field-of-view, has recently begun science observations, and will target a survey of several thousand galaxies. The scientific outputs from such galaxy surveys are strongly linked to survey size, leading the push towards instruments with higher multiplex capability. We have begun work on a new instrument concept, called Hector, which will target a spatially-resolved spectroscopic survey of up to one hundred thousand galaxies. The key science questions for this instrument concept include how do galaxies get their gas, how is star formation and nuclear activity affected by environment, what is the role of feedback, and what processes can be linked to galaxy groups and clusters. One design option for Hector uses the existing 2 degree field-of view top end at the AAT, with 50 individual robotically deployable 61-core hexabundle IFUs, and 3 fixed format spectrographs covering the visible wavelength range with a spectral resolution of approximately 4000. A more ambitious option incorporates a modified top end at the AAT with a new 3 degree field-of-view wide-field-corrector and 100 hexabundle IFUs feeding 6 spectrographs.


Proceedings of SPIE | 2006

It's alive! Performance and control of prototype Starbug actuators

Roger Haynes; Andrew McGrath; Jurek Brzeski; David Correll; Gabriella Frost; Peter Gillingham; Stan Miziarski; Rolf Müller; Scott Smedley

As part of the Starbug development, a range of actuator technologies have been prototyped and trialled in the quest to develop this novel focal plane positioning system. The Starbug concept is a robotic positioning system that deploys multiple payloads, such as pickoff optics, optical fibres and other possible devices to micron level accuracy over a flat or curved focal plane. The development is aimed at addressing some of the limitations of other positioning systems to provide a reliable, cost effective way of positioning multiple payloads in ambient and cryogenic environments. In this paper we identify the specification and required characteristics of the micro-robotic actuators as applied to the MOMSI instrument concept, present descriptions of some of the prototypes along with the results from characterisation and performance tests. These tests were undertaken at various orientations and temperatures as well as using different actuator concepts.


Proceedings of SPIE | 2008

Performance of Echidna fiber positioner for FMOS on Subaru

Masayuki Akiyama; Scott Smedley; Peter Gillingham; Jurek Brzeski; Tony Farrell; Masahiko Kimura; Rolf Müller; Naoyuki Tamura; Naruhisa Takato

Echidna is a fiber positioner designed and built by the Anglo-Australian Observatory using novel technology to position 400 fibers in the prime focus field of the Subaru telescope. The fibers feed two near infrared OH-suppression spectrographs, the whole project being known as Fiber Multi Object Spectrograph (FMOS). In order to accommodate the large number of the fibers in the physically limited area, a new fiber positioning method is developed. Stand-alone tests of the positioner at sea level confirm its performance is fully satisfactory. Initial results and prospects of the on-sky commissioning tests of the positioner are also described.


Proceedings of SPIE | 2014

The MANIFEST fibre positioning system for the Giant Magellan Telescope

Jon Lawrence; David M. Brown; Jurek Brzeski; Scott W. Case; Matthew Colless; Tony Farrell; Luke Gers; James Gilbert; Michael Goodwin; George H. Jacoby; Andrew M. Hopkins; Michael Ireland; K. Kuehn; Nuria P. F. Lorente; Stan Miziarski; Rolf Müller; Vijay Nichani; Azizi Rakman; Samuel Richards; Will Saunders; Nick Staszak; Julia Tims; Minh Vuong; Lew Waller

MANIFEST is a fibre feed system for the Giant Magellan Telescope that, coupled to the seeing-limited instruments GMACS and G-CLEF, offers qualitative and quantitative gains over each instrument’s native capabilities in terms of multiplex, field of view, and resolution. The MANIFEST instrument concept is based on a system of semi-autonomous probes called “Starbugs” that hold and position hundreds of optical fibre IFUs under a glass field plate placed at the GMT Cassegrain focal plane. The Starbug probes feature co-axial piezoceramic tubes that, via the application of appropriate AC waveforms, contract or bend, providing a discrete stepping motion. Simultaneous positioning of all Starbugs is achieved via a closed-loop metrology system.


Proceedings of SPIE | 2012

Integrating the HERMES spectrograph for the AAT

Jeroen Heijmans; Martin Asplund; Sam Barden; Michael N. Birchall; Daniela Carollo; Joss Bland-Hawthorn; Jurek Brzeski; Scott W. Case; Vladimir Churilov; Matthew Colless; Robert Dean; Gayandhi De Silva; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Luke Gers; Michael Goodwin; Doug Gray; Ron Heald; Anthony Heng; Damien Jones; Chiaki Kobayashi; Urs Klauser; Yuriy Kondrat; Jon Lawrence; Steve Lee; Darren Mathews; Stan Miziarski; Guy Monnet; Rolf Müller

The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES spectrograph is given. This paper details the following specific topics: The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and software, data reduction.


Proceedings of SPIE | 2012

Hermes: the engineering challenges

Jurek Brzeski; Luke Gers; Greg Smith; Nicholas F. Staszak

The Australian Astronomical Observatory is building a 4-channel VPH-grating High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the 3.9 meter Anglo-Australian Telescope (AAT). HERMES will provide a nominal spectral resolving power of 28,000 for Galactic Archaeology with an optional high-resolution mode of 45,000 with the use of a slit mask. HERMES is fed by a fibre positioning robot called 2dF at the telescope prime focus. There are a total of 784 science fibres, which interface with the spectrograph via two separate slit body assemblies, each comprising of 392 science fibers. The slit defines the spectral lines of 392 fibres on the detector. The width of the detector determines the spectral bandwidth and the detector height determines the fibre to fibre spacing or cross talk. Tolerances that follow from this are all in the 10 micrometer range. The slit relay optics must contribute negligibly to the overall image quality budget and uniformly illuminate the spectrograph exit pupil. The latter requirement effectively requires that the relay optics provide a telecentric input at the collimator entrance slit. As a result it is critical to align the optical components to extreme precision required by the optical design. This paper discusses the engineering challenges of designing, optimising, tolerancing and manufacturing of very precise mechanical components for housing optics and the design of low cost of jigs and fixtures for alignment and assembly of the optics.

Collaboration


Dive into the Jurek Brzeski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Smith

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Jon Lawrence

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Peter Gillingham

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Stan Miziarski

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Tony Farrell

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Will Saunders

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Michael Goodwin

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Heijmans

Australian Astronomical Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge