Jürgen Kröger
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jürgen Kröger.
Climate Dynamics | 2015
A. Bellucci; Reindert J. Haarsma; S. Gualdi; P.J. Athanasiadis; Mihaela Caian; Christophe Cassou; Elodie Fernandez; Agathe Germe; Johann H. Jungclaus; Jürgen Kröger; Daniela Matei; Wolfgang A. Mueller; Holger Pohlmann; D. Salas y Melia; E. Sanchez; Doug Smith; L. Terray; Klaus Wyser; Shuting Yang
Abstract A multi-model ensemble of decadal prediction experiments, performed in the framework of the EU-funded COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) Project following the 5th Coupled Model Intercomparison Project protocol is examined. The ensemble combines a variety of dynamical models, initialization and perturbation strategies, as well as data assimilation products employed to constrain the initial state of the system. Taking advantage of the multi-model approach, several aspects of decadal climate predictions are assessed, including predictive skill, impact of the initialization strategy and the level of uncertainty characterizing the predicted fluctuations of key climate variables. The present analysis adds to the growing evidence that the current generation of climate models adequately initialized have significant skill in predicting years ahead not only the anthropogenic warming but also part of the internal variability of the climate system. An important finding is that the multi-model ensemble mean does generally outperform the individual forecasts, a well-documented result for seasonal forecasting, supporting the need to extend the multi-model framework to real-time decadal predictions in order to maximize the predictive capabilities of currently available decadal forecast systems. The multi-model perspective did also allow a more robust assessment of the impact of the initialization strategy on the quality of decadal predictions, providing hints of an improved forecast skill under full-value (with respect to anomaly) initialization in the near-term range, over the Indo-Pacific equatorial region. Finally, the consistency across the different model predictions was assessed. Specifically, different systems reveal a general agreement in predicting the near-term evolution of surface temperatures, displaying positive correlations between different decadal hindcasts over most of the global domain.
Bulletin of the American Meteorological Society | 2016
Jochem Marotzke; Wolfgang A. Müller; F. S. E. Vamborg; Paul Becker; Ulrich Cubasch; Hendrik Feldmann; Frank Kaspar; C. Kottmeier; Camille Marini; Iuliia Polkova; Kerstin Prömmel; Henning W. Rust; Detlef Stammer; Uwe Ulbrich; Christopher Kadow; Armin Köhl; Jürgen Kröger; Tim Kruschke; Joaquim G. Pinto; Holger Pohlmann; Mark Reyers; Marc Schröder; Frank Sienz; Claudia Timmreck; Markus Ziese
AbstractMittelfristige Klimaprognose (MiKlip), an 8-yr German national research project on decadal climate prediction, is organized around a global prediction system comprising the Max Planck Institute Earth System Model (MPI-ESM) together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that target future operational use.Three prediction system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multiyear-mean European summer surface temperatures, extratropical cyclone tracks, the quasi-biennial oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays h...
Journal of Climate | 2015
Susanna Corti; T. N. Palmer; Magdalena A. Balmaseda; A. Weisheimer; Sybren S. Drijfhout; Nick Dunstone; Wilco Hazeleger; Jürgen Kröger; Holger Pohlmann; Doug Smith; Von Jin Song Storch; Bert Wouters
The impact of initial conditions relative to external forcings in decadal integrations from an ensemble of state-of-the-art prediction models has been assessed using specifically designed sensitivity experiments (SWAP experiments). They consist of two sets of 10-yr-long ensemble hindcasts for two initial dates in 1965 and 1995 using either the external forcings from the “correct” decades or swapping the forcings between the two decades. By comparing the two sets of integrations, the impact of external forcing versus initial conditions on the predictability over multiannual time scales was estimated as the function of lead time of the hindcast. It was found that over time scales longer than about 1 yr, the predictability of sea surface temperatures (SSTs) on a global scale arises mainly from the external forcing. However, the correct initialization has a longer impact on SST predictability over specific regions such as the North Atlantic, the northwestern Pacific, and the Southern Ocean. The impact of initialization is even longer and extends to wider regions when below-surface ocean variables are considered. For the western and eastern tropical Atlantic, the impact of initialization for the 700-m heat content (HTC700) extends to as much as 9 years for some of the models considered. In all models the impact of initial conditions on the predictability of the Atlantic meridional overturning circulation (AMOC) is dominant for the first 5 years.
Climate Dynamics | 2017
Holger Pohlmann; Jürgen Kröger; Richard John Greatbatch; Wolfgang A. Müller
Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2–5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2–5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.
Climate Dynamics | 2018
Jürgen Kröger; Holger Pohlmann; Frank Sienz; Jochem Marotzke; Johanna Baehr; Armin Köhl; Kameswarrao Modali; Iuliia Polkova; Detlef Stammer; F. S. E. Vamborg; Wolfgang A. Müller
Our decadal climate prediction system, which is based on the Max-Planck-Institute Earth System Model, is initialized from a coupled assimilation run that utilizes nudging to selected state parameters from reanalyses. We apply full-field nudging in the atmosphere and either full-field or anomaly nudging in the ocean. Full fields from two different ocean reanalyses are considered. This comparison of initialization strategies focuses on the North Atlantic Subpolar Gyre (SPG) region, where the transition from anomaly to full-field nudging reveals large differences in prediction skill for sea surface temperature and ocean heat content (OHC). We show that nudging of temperature and salinity in the ocean modifies OHC and also induces changes in mass and heat transports associated with the ocean flow. In the SPG region, the assimilated OHC signal resembles well OHC from observations, regardless of using full fields or anomalies. The resulting ocean transport, on the other hand, reveals considerable differences between full-field and anomaly nudging. In all assimilation runs, ocean heat transport together with net heat exchange at the surface does not correspond to OHC tendencies, the SPG heat budget is not closed. Discrepancies in the budget in the cases of full-field nudging exceed those in the case of anomaly nudging by a factor of 2–3. The nudging-induced changes in ocean transport continue to be present in the free running hindcasts for up to 5 years, a clear expression of memory in our coupled system. In hindcast mode, on annual to inter-annual scales, ocean heat transport is the dominant driver of SPG OHC. Thus, we ascribe a significant reduction in OHC prediction skill when using full-field instead of anomaly initialization to an initialization shock resulting from the poor initialization of the ocean flow.
Nature Geoscience | 2012
Thomas Reichler; Junsu Kim; Elisa Manzini; Jürgen Kröger
Geophysical Research Letters | 2012
Wolfgang A. Müller; Johanna Baehr; H. Haak; Johann H. Jungclaus; Jürgen Kröger; Daniela Matei; Dirk Notz; Holger Pohlmann; J.-S. von Storch; Jochem Marotzke
Climate Dynamics | 2012
Jürgen Kröger; Wolfgang A. Müller; Jin Song von Storch
Journal of Geophysical Research | 2013
Wilco Hazeleger; Bert Wouters; G. J. van Oldenborgh; S. Corti; T. N. Palmer; Doug Smith; Nick Dunstone; Jürgen Kröger; Holger Pohlmann; J.-S. von Storch
Climate Dynamics | 2011
Jürgen Kröger; Fred Kucharski