Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Holger Pohlmann is active.

Publication


Featured researches published by Holger Pohlmann.


Bulletin of the American Meteorological Society | 2014

Decadal climate prediction: An update from the trenches

Gerald A. Meehl; Lisa M. Goddard; G. J. Boer; Robert J. Burgman; Grant Branstator; Christophe Cassou; Susanna Corti; Gokhan Danabasoglu; Francisco J. Doblas-Reyes; Ed Hawkins; Alicia Karspeck; Masahide Kimoto; Arun Kumar; Daniela Matei; Juliette Mignot; Rym Msadek; Antonio Navarra; Holger Pohlmann; Michele M. Rienecker; T. Rosati; Edwin K. Schneider; Doug Smith; Rowan Sutton; Haiyan Teng; Geert Jan van Oldenborgh; Gabriel A. Vecchi; Stephen Yeager

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialize...


Journal of Climate | 2009

Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: Effects on the North Atlantic

Holger Pohlmann; Johann H. Jungclaus; Armin Köhl; Detlef Stammer; Jochem Marotzke

This study aims at improving the forecast skill of climate predictions through the use of ocean synthesis data for initial conditions of a coupled climate model. For this purpose, the coupled model of the Max Planck Institute (MPI) for Meteorology, which consists of the atmosphere model ECHAM5 and the MPI Ocean Model (MPI-OM), is initialized with oceanic synthesis fields available from the German contribution to Estimating the Circulation and Climate of the Ocean (GECCO) project. The use of an anomaly coupling scheme during the initialization avoids the main problems with drift in the climate predictions. Thus, the coupled model is continuously forced to follow the density anomalies of the GECCO synthesis over the period 1952–2001. Hindcast experiments are initialized from this experiment at constant intervals. The results show predictive skill through the initialization up to the decadal time scale, particularly over the North Atlantic. Viewed over the time scales analyzed here (annual, 5-yr, and 10-yr mean), greater skill for the North Atlantic sea surface temperature (SST) is obtained in the hindcast experiments than in either a damped persistence or trend forecast. The Atlantic meridional overturning circulation hindcast closely follows that of the GECCO oceanic synthesis. Hindcasts of global-mean temperature do not obtain greater skill than either damped persistence or a trend forecast, owing to the SST errors in the GECCO synthesis, outside the North Atlantic. An ensemble of forecast experiments is subsequently performed over the period 2002–11. North Atlantic SST from the forecast experiment agrees well with observations until the year 2007, and it is higher than if simulated without the oceanic initialization (averaged over the forecast period). The results confirm that both the initial and the boundary conditions must be accounted for in decadal climate predictions.


Journal of Climate | 2004

Estimating the Decadal Predictability of a Coupled AOGCM

Holger Pohlmann; Michael Botzet; Mojib Latif; Andreas Roesch; Martin Wild; Peter Tschuck

On seasonal time scales, ENSO prediction has become feasible in an operational framework in recent years. On decadal to multidecadal time scales, the variability of the oceanic circulation is assumed to provide a potential for climate prediction. To investigate the decadal predictability of the coupled atmosphere–ocean general circulation model (AOGCM) European Centre-Hamburg model version 5/Max Planck Institute Ocean Model (ECHAM5/MPI-OM), a 500-yr-long control integration and “perfect model” predictability experiments are analyzed. The results show that the sea surface temperatures (SSTs) of the North Atlantic, Nordic Seas, and Southern Ocean exhibit predictability on multidecadal time scales. Over the ocean, the predictability of surface air temperature (SAT) is very similar to that of SST. Over land, there is little evidence of decadal predictability of SAT except for some small maritime-influenced regions of Europe. The AOGCM produces predictable signals in lower-tropospheric temperature and precipitation over the North Atlantic, but not in sea level pressure.


Journal of Climate | 2006

A Review of Predictability Studies of Atlantic Sector Climate on Decadal Time Scales

Mojib Latif; Matthew D. Collins; Holger Pohlmann; Noel Keenlyside

This review paper discusses the physical basis and the potential for decadal climate predictability over the Atlantic and its adjacent land areas. Many observational and modeling studies describe pronounced decadal and multidecadal variability in the Atlantic Ocean. However, it still needs to be quantified to which extent the variations in the ocean drive variations in the atmosphere and over land. In particular, although a clear impact of the Tropics on the midlatitudes has been demonstrated, it is unclear if and how the extratropical atmosphere responds to midlatitudinal sea surface temperature anomalies. Although the mechanisms behind the decadal to multidecadal variability in the Atlantic sector are still controversial, there is some consensus that some of the longer-term multidecadal variability is driven by variations in the thermohaline circulation. The variations in the North Atlantic thermohaline circulation appear to be predictable one to two decades ahead, as shown by a number of perfect model predictability experiments. The next few decades will be dominated by these multidecadal variations, although the effects of anthropogenic climate change are likely to introduce trends. Some impact of the variations of the thermohaline circulation on the atmosphere has been demonstrated in some studies so that useful decadal predictions with economic benefit may be possible.


Geophysical Research Letters | 2011

Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport

Ed Hawkins; Robin S. Smith; L. C. Allison; Jonathan M. Gregory; Tim Woollings; Holger Pohlmann; B. de Cuevas

The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.


Climate Dynamics | 2013

A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction

Doug Smith; Rosie Eade; Holger Pohlmann

There are two main approaches for dealing with model biases in forecasts made with initialized climate models. In full-field initialization, model biases are removed during the assimilation process by constraining the model to be close to observations. Forecasts drift back towards the model’s preferred state, thereby re-establishing biases which are then removed with an a posterior lead-time dependent correction diagnosed from a set of historical tests (hindcasts). In anomaly initialization, the model is constrained by observed anomalies and deviates from its preferred climatology only by the observed variability. In theory, the forecasts do not drift, and biases may be removed based on the difference between observations and independent model simulations of a given period. Both approaches are currently in use, but their relative merits are unclear. Here we compare the skill of each approach in comprehensive decadal hindcasts starting each year from 1960 to 2009, made using the Met Office decadal prediction system. Both approaches are more skilful than climatology in most regions for temperature and some regions for precipitation. On seasonal timescales, full-field initialized hindcasts of regional temperature and precipitation are significantly more skilful on average than anomaly initialized hindcasts. Teleconnections associated with the El Niño Southern Oscillation are stronger with the full-field approach, providing a physical basis for the improved precipitation skill. Differences in skill on multi-year timescales are generally not significant. However, anomaly initialization provides a better estimate of forecast skill from a limited hindcast set.


Climate Dynamics | 2013

Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system

Holger Pohlmann; Doug Smith; Magdalena A. Balmaseda; Noel Keenlyside; Simona Masina; Daniela Matei; Wolfgang A. Müller; Philippe Rogel

Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.


Geophysical Research Letters | 2014

Predictability of the quasi‐biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales

Adam A. Scaife; Maria Athanassiadou; Martin Andrews; Alberto Arribas; Mark P. Baldwin; Nick Dunstone; Jeff R. Knight; Craig MacLachlan; Elisa Manzini; Wolfgang A. Müller; Holger Pohlmann; Doug Smith; Tim Stockdale; Andrew Williams

The predictability of the quasi-biennial oscillation (QBO) is examined in initialized climate forecasts extending out to lead times of years. We use initialized retrospective predictions made with coupled ocean-atmosphere climate models that have an internally generated QBO. We demonstrate predictability of the QBO extending more than 3 years into the future, well beyond timescales normally associated with internal atmospheric processes. Correlation scores with observational analyses exceed 0.7 at a lead time of 12 months. We also examine the variation of predictability with season and QBO phase and find that skill is lowest in winter. An assessment of perfect predictability suggests that higher skill may be achievable through improved initialization and climate modeling of the QBO, although this may depend on the realism of gravity wave source parameterizations in the models. Finally, we show that skilful prediction of the QBO itself does not guarantee predictability of the extratropical winter teleconnection that is important for surface winter climate prediction.


Journal of Climate | 2006

Influence of the Multidecadal Atlantic Meridional Overturning Circulation Variability on European Climate

Holger Pohlmann; Frank Sienz; Mojib Latif

The influence of the natural multidecadal variability of the Atlantic meridional overturning circulation (MOC) on European climate is investigated using a simulation with the coupled atmosphere–ocean general circulation model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). The results show that Atlantic MOC fluctuations, which go along with changes in the northward heat transport, in turn affect European climate. Additionally, ensemble predictability experiments with ECHAM5/MPI-OM show that the probability density functions of surface air temperatures in the North Atlantic/European region are affected by the multidecadal variability of the large-scale oceanic circulation. Thus, some useful decadal predictability may exist in the Atlantic/European sector.


Climate Dynamics | 2015

An assessment of a multi-model ensemble of decadal climate predictions

A. Bellucci; Reindert J. Haarsma; S. Gualdi; P.J. Athanasiadis; Mihaela Caian; Christophe Cassou; Elodie Fernandez; Agathe Germe; Johann H. Jungclaus; Jürgen Kröger; Daniela Matei; Wolfgang A. Mueller; Holger Pohlmann; D. Salas y Melia; E. Sanchez; Doug Smith; L. Terray; Klaus Wyser; Shuting Yang

Abstract A multi-model ensemble of decadal prediction experiments, performed in the framework of the EU-funded COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) Project following the 5th Coupled Model Intercomparison Project protocol is examined. The ensemble combines a variety of dynamical models, initialization and perturbation strategies, as well as data assimilation products employed to constrain the initial state of the system. Taking advantage of the multi-model approach, several aspects of decadal climate predictions are assessed, including predictive skill, impact of the initialization strategy and the level of uncertainty characterizing the predicted fluctuations of key climate variables. The present analysis adds to the growing evidence that the current generation of climate models adequately initialized have significant skill in predicting years ahead not only the anthropogenic warming but also part of the internal variability of the climate system. An important finding is that the multi-model ensemble mean does generally outperform the individual forecasts, a well-documented result for seasonal forecasting, supporting the need to extend the multi-model framework to real-time decadal predictions in order to maximize the predictive capabilities of currently available decadal forecast systems. The multi-model perspective did also allow a more robust assessment of the impact of the initialization strategy on the quality of decadal predictions, providing hints of an improved forecast skill under full-value (with respect to anomaly) initialization in the near-term range, over the Indo-Pacific equatorial region. Finally, the consistency across the different model predictions was assessed. Specifically, different systems reveal a general agreement in predicting the near-term evolution of surface temperatures, displaying positive correlations between different decadal hindcasts over most of the global domain.

Collaboration


Dive into the Holger Pohlmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noel Keenlyside

Bjerknes Centre for Climate Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge