Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin L. Sonnenburg is active.

Publication


Featured researches published by Justin L. Sonnenburg.


Nature | 2013

Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens

Katharine Ng; Jessica A. Ferreyra; Steven K. Higginbottom; Jonathan B. Lynch; Purna C. Kashyap; Smita Gopinath; Natasha Naidu; Biswa Choudhury; Bart C. Weimer; Denise M. Monack; Justin L. Sonnenburg

The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.


Nature | 2016

Diet-induced extinctions in the gut microbiota compound over generations

Erica D. Sonnenburg; Samuel A. Smits; Mikhail Tikhonov; Steven K. Higginbottom; Ned S. Wingreen; Justin L. Sonnenburg

The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including immune function and metabolism. The reduced diversity of the gut microbiota in Western populations compared to that in populations living traditional lifestyles presents the question of which factors have driven microbiota change during modernization. Microbiota-accessible carbohydrates (MACs) found in dietary fibre have a crucial involvement in shaping this microbial ecosystem, and are notably reduced in the Western diet (high in fat and simple carbohydrates, low in fibre) compared with a more traditional diet. Here we show that changes in the microbiota of mice consuming a low-MAC diet and harbouring a human microbiota are largely reversible within a single generation. However, over several generations, a low-MAC diet results in a progressive loss of diversity, which is not recoverable after the reintroduction of dietary MACs. To restore the microbiota to its original state requires the administration of missing taxa in combination with dietary MAC consumption. Our data illustrate that taxa driven to low abundance when dietary MACs are scarce are inefficiently transferred to the next generation, and are at increased risk of becoming extinct within an isolated population. As more diseases are linked to the Western microbiota and the microbiota is targeted therapeutically, microbiota reprogramming may need to involve strategies that incorporate dietary MACs as well as taxa not currently present in the Western gut.


Nature | 2016

Diet–microbiota interactions as moderators of human metabolism

Justin L. Sonnenburg; Fredrik Bäckhed

It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.


Nature Immunology | 2004

Getting a grip on things: how do communities of bacterial symbionts become established in our intestine?

Justin L. Sonnenburg; Largus T. Angenent; Jeffrey Ivan Gordon

The gut contains our largest collection of resident microorganisms. One obvious question is how microbial communities establish and maintain themselves within a perfused intestine. The answers, which may come in part from observations made by environmental engineers and glycobiologists, have important implications for immunologists who wish to understand how indigenous microbial communities are accommodated. Here we propose that the mucus gel layer overlying the intestinal epithelium is a key contributor to the structural and functional stability of this microbiota and its tolerance by the host.


Cell Host & Microbe | 2011

Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways

Angela Marcobal; Mariana Barboza; Erica D. Sonnenburg; Nicholas A. Pudlo; Eric C. Martens; Prerak T. Desai; Carlito B. Lebrilla; Bart C. Weimer; David A. Mills; J. Bruce German; Justin L. Sonnenburg

Newborns are colonized with an intestinal microbiota shortly after birth, but the factors governing the retention and abundance of specific microbial lineages are unknown. Nursing infants consume human milk oligosaccharides (HMOs) that pass undigested to the distal gut, where they may be digested by microbes. We determined that the prominent neonate gut residents, Bacteroides thetaiotaomicron and Bacteroides fragilis, induce the same genes during HMO consumption that are used to harvest host mucus glycans, which are structurally similar to HMOs. Lacto-N-neotetraose, a specific HMO component, selects for HMO-adapted species such as Bifidobacterium infantis, which cannot use mucus, and provides a selective advantage to B. infantis in vivo when biassociated with B. thetaiotaomicron in the gnotobiotic mouse gut. This indicates that the complex oligosaccharide mixture within HMOs attracts both mutualistic mucus-adapted species and HMO-adapted bifidobacteria to the infant intestine that likely facilitate both milk and future solid food digestion.


Gastroenterology | 2013

Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice.

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Muriel H. Larauche; Henri Duboc; Kristen A. Earle; Erica D. Sonnenburg; Jessica A. Ferreyra; Steven K. Higginbottom; Mulugeta Million; Yvette Taché; Pankaj J. Pasricha; Rob Knight; Gianrico Farrugia; Justin L. Sonnenburg

BACKGROUND & AIMS Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. METHODS We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). RESULTS Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. CONCLUSIONS Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.


The FASEB Journal | 2015

Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells

Christopher S. Reigstad; Charles E. Salmonson; John F. Rainey; Joseph H. Szurszewski; David R. Linden; Justin L. Sonnenburg; Gianrico Farrugia; Purna C. Kashyap

Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5‐hydroxytryptamine (5‐HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ‐free (GF) or humanized (HM; ex‐GF colonized with human gut microbiota). 5‐HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5‐HT synthesis; P < 0.01] and chromogranin A (neuroendocrine secretion; P < 0.01), with no effect on monoamine oxidase A (serotonin catabolism), serotonin receptor 5‐HT4, or mouse serotonin transporter. HM and CR mice also had increased colonic Tph1 protein (P < 0.05) and 5‐HT concentrations (GF, 17 ± 3 ng/mg; HM, 25 ± 2 ng/mg; and CR, 35 ± 3 ng/mg; P < 0.05). Enterochromaffin (EC) cell numbers (cells producing 5‐HT) were unchanged. Short‐chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5‐HT production and homeostasis.—Reigstad, C. S., Salmonson, C. E., Rainey, III, J. F., Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., Farrugia, G., Kashyap, P. C. Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395‐1403 (2015). www.fasebj.org


Cell Metabolism | 2014

Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates.

Erica D. Sonnenburg; Justin L. Sonnenburg

The gut microbiota of a healthy person may not be equivalent to a healthy microbiota. It is possible that the Western microbiota is actually dysbiotic and predisposes individuals to a variety of diseases. The asymmetric plasticity between the relatively stable human genome and the more malleable gut microbiome suggests that incompatibilities between the two could rapidly arise. The Western lifestyle, which includes a diet low in microbiota-accessible carbohydrates (MACs), has selected for a microbiota with altered membership and functionality compared to those of groups living traditional lifestyles. Interactions between resident microbes and host leading to immune dysregulation may explain several diseases that share inflammation as a common basis. The low-MAC Western diet results in poor production of gut microbiota-generated short-chain fatty acids (SCFAs), which attenuate inflammation through a variety of mechanisms in mouse models. Studies focused on modern and traditional societies, combined with animal models, are needed to characterize the connection between diet, microbiota composition, and function. Differentiating between an optimal microbiota, one that increases disease risk, and one that is causative or potentiates disease will be required to further understand both the etiology and possible treatments for health problems related to microbiota dysbiosis.


The ISME Journal | 2013

A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice

Angela Marcobal; Purna C. Kashyap; Tyrrell A. Nelson; P A Aronov; Mohamed S. Donia; Alfred M. Spormann; Michael A. Fischbach; Justin L. Sonnenburg

Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community–host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to ‘fingerprint’ microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography–mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota’s metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest ‘personalized’ aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Samuel A. Smits; Erica D. Sonnenburg; Elizabeth K. Costello; Steven K. Higginbottom; Steven E. Domino; Susan Holmes; David A. Relman; Rob Knight; Jeffrey I. Gordon; Justin L. Sonnenburg

Significance Our data demonstrate that differences in host genotype that affect the carbohydrate landscape of the distal gut interact with diet to alter the composition and function of resident microbes in a diet-dependent manner. We investigate how host mucus glycan composition interacts with dietary carbohydrate content to influence the composition and expressed functions of a human gut community. The humanized gnotobiotic mice mimic humans with a nonsecretor phenotype due to knockout of their α1–2 fucosyltransferase (Fut2) gene. The fecal microbiota of Fut2− mice that lack fucosylated host glycans show decreased alpha diversity relative to Fut2+ mice and exhibit significant differences in community composition. A glucose-rich plant polysaccharide-deficient (PD) diet exerted a strong effect on the microbiota membership but eliminated the effect of Fut2 genotype. Additionally fecal metabolites predicted host genotype in mice on a polysaccharide-rich standard diet but not on a PD diet. A more detailed mechanistic analysis of these interactions involved colonization of gnotobiotic Fut2+ and Fut2− mice with Bacteroides thetaiotaomicron, a prominent member of the human gut microbiota known to adaptively forage host mucosal glycans when dietary polysaccharides are absent. Within Fut2− mice, the B. thetaiotaomicron fucose catabolic pathway was markedly down-regulated, whereas BT4241–4247, an operon responsive to terminal β-galactose, the precursor that accumulates in the Fut2− mice, was significantly up-regulated. These changes in B. thetaiotaomicron gene expression were only evident in mice fed a PD diet, wherein B. thetaiotaomicron relies on host mucus consumption. Furthermore, up-regulation of the BT4241–4247 operon was also seen in humanized Fut2− mice. Together, these data demonstrate that differences in host genotype that affect the carbohydrate landscape of the distal gut interact with diet to alter the composition and function of resident microbes in a diet-dependent manner.

Collaboration


Dive into the Justin L. Sonnenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey I. Gordon

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Michael A. Fischbach

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar

Ajit Varki

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge