Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven K. Higginbottom is active.

Publication


Featured researches published by Steven K. Higginbottom.


Nature | 2013

Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens

Katharine Ng; Jessica A. Ferreyra; Steven K. Higginbottom; Jonathan B. Lynch; Purna C. Kashyap; Smita Gopinath; Natasha Naidu; Biswa Choudhury; Bart C. Weimer; Denise M. Monack; Justin L. Sonnenburg

The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.


Nature | 2016

Diet-induced extinctions in the gut microbiota compound over generations

Erica D. Sonnenburg; Samuel A. Smits; Mikhail Tikhonov; Steven K. Higginbottom; Ned S. Wingreen; Justin L. Sonnenburg

The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including immune function and metabolism. The reduced diversity of the gut microbiota in Western populations compared to that in populations living traditional lifestyles presents the question of which factors have driven microbiota change during modernization. Microbiota-accessible carbohydrates (MACs) found in dietary fibre have a crucial involvement in shaping this microbial ecosystem, and are notably reduced in the Western diet (high in fat and simple carbohydrates, low in fibre) compared with a more traditional diet. Here we show that changes in the microbiota of mice consuming a low-MAC diet and harbouring a human microbiota are largely reversible within a single generation. However, over several generations, a low-MAC diet results in a progressive loss of diversity, which is not recoverable after the reintroduction of dietary MACs. To restore the microbiota to its original state requires the administration of missing taxa in combination with dietary MAC consumption. Our data illustrate that taxa driven to low abundance when dietary MACs are scarce are inefficiently transferred to the next generation, and are at increased risk of becoming extinct within an isolated population. As more diseases are linked to the Western microbiota and the microbiota is targeted therapeutically, microbiota reprogramming may need to involve strategies that incorporate dietary MACs as well as taxa not currently present in the Western gut.


Gastroenterology | 2013

Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice.

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Muriel H. Larauche; Henri Duboc; Kristen A. Earle; Erica D. Sonnenburg; Jessica A. Ferreyra; Steven K. Higginbottom; Mulugeta Million; Yvette Taché; Pankaj J. Pasricha; Rob Knight; Gianrico Farrugia; Justin L. Sonnenburg

BACKGROUND & AIMS Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. METHODS We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). RESULTS Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. CONCLUSIONS Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota

Purna C. Kashyap; Angela Marcobal; Luke K. Ursell; Samuel A. Smits; Erica D. Sonnenburg; Elizabeth K. Costello; Steven K. Higginbottom; Steven E. Domino; Susan Holmes; David A. Relman; Rob Knight; Jeffrey I. Gordon; Justin L. Sonnenburg

Significance Our data demonstrate that differences in host genotype that affect the carbohydrate landscape of the distal gut interact with diet to alter the composition and function of resident microbes in a diet-dependent manner. We investigate how host mucus glycan composition interacts with dietary carbohydrate content to influence the composition and expressed functions of a human gut community. The humanized gnotobiotic mice mimic humans with a nonsecretor phenotype due to knockout of their α1–2 fucosyltransferase (Fut2) gene. The fecal microbiota of Fut2− mice that lack fucosylated host glycans show decreased alpha diversity relative to Fut2+ mice and exhibit significant differences in community composition. A glucose-rich plant polysaccharide-deficient (PD) diet exerted a strong effect on the microbiota membership but eliminated the effect of Fut2 genotype. Additionally fecal metabolites predicted host genotype in mice on a polysaccharide-rich standard diet but not on a PD diet. A more detailed mechanistic analysis of these interactions involved colonization of gnotobiotic Fut2+ and Fut2− mice with Bacteroides thetaiotaomicron, a prominent member of the human gut microbiota known to adaptively forage host mucosal glycans when dietary polysaccharides are absent. Within Fut2− mice, the B. thetaiotaomicron fucose catabolic pathway was markedly down-regulated, whereas BT4241–4247, an operon responsive to terminal β-galactose, the precursor that accumulates in the Fut2− mice, was significantly up-regulated. These changes in B. thetaiotaomicron gene expression were only evident in mice fed a PD diet, wherein B. thetaiotaomicron relies on host mucus consumption. Furthermore, up-regulation of the BT4241–4247 operon was also seen in humanized Fut2− mice. Together, these data demonstrate that differences in host genotype that affect the carbohydrate landscape of the distal gut interact with diet to alter the composition and function of resident microbes in a diet-dependent manner.


Science Translational Medicine | 2015

A small-molecule antivirulence agent for treating Clostridium difficile infection

Kristina Oresic Bender; Megan Garland; Jessica A. Ferreyra; Andrew J. Hryckowian; Matthew A. Child; Aaron W. Puri; David E. Solow-Cordero; Steven K. Higginbottom; Ehud Segal; Niaz Banaei; Aimee Shen; Justin L. Sonnenburg; Matthew Bogyo

A high-throughput screen against the Clostridium difficile toxin B cysteine protease domain identified a drug in clinical trials that reduced C. difficile pathology in a mouse model. A tough drug for a C. difficile problem Clostridium difficile infection (CDI) is an emerging disease threat caused by use of broad-spectrum antibiotics. CDI is the leading cause of hospital-acquired diarrhea, and with nearly half a million cases diagnosed in the United States each year, it places a yearly estimated burden of more than


Analytical Chemistry | 2012

Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations.

Christopher M. Rath; Theodore Alexandrov; Steven K. Higginbottom; Jiao Song; Marcos E. Milla; Michael A. Fischbach; Justin L. Sonnenburg; Pieter C. Dorrestein

4 billion on the U.S. healthcare system. A shift away from standard antibiotics is required to successfully contain this pathogen. Using a screen targeting bacterial virulence factors, Oresic Bender and colleagues identified a lead compound already in human clinical trials. The compound showed potent protective effects in a mouse model of CDI, supporting its translation into clinical studies as a new non-antibiotic treatment for CDI. Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.


Nature | 2017

A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites

Dylan Dodd; Matthew H. Spitzer; William Van Treuren; Bryan D. Merrill; Andrew J. Hryckowian; Steven K. Higginbottom; Anthony Le; Tina M. Cowan; Garry P. Nolan; Michael A. Fischbach; Justin L. Sonnenburg

The communities constituting our microbiotas are emerging as mediators of the health-disease continuum. However, deciphering the functional impact of microbial communities on host pathophysiology represents a formidable challenge, due to the heterogeneous distribution of chemical and microbial species within the gastrointestinal (GI) tract. Herein, we apply imaging mass spectrometry (IMS) to localize metabolites from the interaction between the host and colonizing microbiota. This approach complements other molecular imaging methodologies in that analytes need not be known a priori, offering the possibility of untargeted analysis. Localized molecules within the GI tract were then identified in situ by surface sampling with nanodesorption electrospray ionization Fourier transform ion cyclotron resonance-mass spectrometry (nanoDESI FTICR-MS). Products from diverse structural classes were identified including cholesterol-derived lipids, glycans, and polar metabolites. Specific chemical transformations performed by the microbiota were validated with bacteria in culture. This study illustrates how untargeted spatial characterization of metabolites can be applied to the molecular dissection of complex biology in situ.


Scientific Reports | 2015

Metabolome progression during early gut microbial colonization of gnotobiotic mice

Angela Marcobal; Tahir Yusufaly; Steven K. Higginbottom; Michael Snyder; Justin L. Sonnenburg; George Mias

The human gut microbiota produces dozens of metabolites that accumulate in the bloodstream, where they can have systemic effects on the host. Although these small molecules commonly reach concentrations similar to those achieved by pharmaceutical agents, remarkably little is known about the microbial metabolic pathways that produce them. Here we use a combination of genetics and metabolic profiling to characterize a pathway from the gut symbiont Clostridium sporogenes that generates aromatic amino acid metabolites. Our results reveal that this pathway produces twelve compounds, nine of which are known to accumulate in host serum. All three aromatic amino acids (tryptophan, phenylalanine and tyrosine) serve as substrates for the pathway, and it involves branching and alternative reductases for specific intermediates. By genetically manipulating C. sporogenes, we modulate serum levels of these metabolites in gnotobiotic mice, and show that in turn this affects intestinal permeability and systemic immunity. This work has the potential to provide the basis of a systematic effort to engineer the molecular output of the gut bacterial community.


mSystems | 2016

Individualized responses of gut microbiota to dietary intervention modeled in humanized mice

Samuel A. Smits; Angela Marcobal; Steven K. Higginbottom; Justin L. Sonnenburg; Purna C. Kashyap

The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology.


mSphere | 2018

Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains

Payal Joglekar; Erica D. Sonnenburg; Steven K. Higginbottom; Kristen A. Earle; Carl Morland; Sarah Shapiro-Ward; David N. Bolam; Justin L. Sonnenburg

Dietary modification has long been used empirically to modify symptoms in inflammatory bowel disease, irritable bowel syndrome, and a diverse group of diseases with gastrointestinal symptoms. There is both anecdotal and scientific evidence to suggest that individuals respond quite differently to similar dietary changes, and the highly individualized nature of the gut microbiota makes it a prime candidate for these differences. To overcome the typical confounding factors of human dietary interventions, here we employ ex-germfree mice colonized by microbiotas of three different humans to test how different microbiotas respond to a defined change in carbohydrate content of diet by measuring changes in microbiota composition and function using marker gene-based next-generation sequencing and metabolomics. Our findings suggest that the same diet has very different effects on each microbiota’s membership and function, which may in turn explain interindividual differences in response to a dietary ingredient. ABSTRACT Diet plays an important role in shaping the structure and function of the gut microbiota. The microbes and microbial products in turn can influence various aspects of host physiology. One promising route to affect host function and restore health is by altering the gut microbiome using dietary intervention. The individuality of the microbiome may pose a significant challenge, so we sought to determine how different microbiotas respond to the same dietary intervention in a controlled setting. We modeled gut microbiotas from three healthy donors in germfree mice and defined compositional and functional alteration following a change in dietary microbiota-accessible carbohydrates (MACs). The three gut communities exhibited responses that differed markedly in magnitude and in the composition of microbiota-derived metabolites. Adjustments in community membership did not correspond to the magnitude of changes in the microbial metabolites, highlighting potential challenges in predicting functional responses from compositional data and the need to assess multiple microbiota parameters following dietary interventions. IMPORTANCE Dietary modification has long been used empirically to modify symptoms in inflammatory bowel disease, irritable bowel syndrome, and a diverse group of diseases with gastrointestinal symptoms. There is both anecdotal and scientific evidence to suggest that individuals respond quite differently to similar dietary changes, and the highly individualized nature of the gut microbiota makes it a prime candidate for these differences. To overcome the typical confounding factors of human dietary interventions, here we employ ex-germfree mice colonized by microbiotas of three different humans to test how different microbiotas respond to a defined change in carbohydrate content of diet by measuring changes in microbiota composition and function using marker gene-based next-generation sequencing and metabolomics. Our findings suggest that the same diet has very different effects on each microbiota’s membership and function, which may in turn explain interindividual differences in response to a dietary ingredient. Author Video: An author video summary of this article is available.

Collaboration


Dive into the Steven K. Higginbottom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke K. Ursell

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael A. Fischbach

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge