Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin R. Prigge is active.

Publication


Featured researches published by Justin R. Prigge.


Science Advances | 2016

A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems.

Éva Dóka; Irina Pader; Adrienn Bíró; Katarina Johansson; Krisztina Ballagó; Justin R. Prigge; Daniel Pastor-Flores; Tobias P. Dick; Edward E. Schmidt; Elias S.J. Arnér; Péter Nagy

Protein Persulfide Detection Protocol reveals vital roles for thioredoxin and glutathione systems in maintaining sulfane sulfur homeostasis in cells and in vivo. Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide signaling pathways.


Free Radical Biology and Medicine | 2012

Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1.

Justin R. Prigge; Sofi Eriksson; Sonya V. Iverson; Tesia A. Meade; Mario R. Capecchi; Elias S.J. Arnér; Edward E. Schmidt

Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.


Genesis | 2009

Cre activity in fetal albCre mouse hepatocytes: Utility for developmental studies.

Carla M. Weisend; Jean A. Kundert; Elena S. Suvorova; Justin R. Prigge; Edward E. Schmidt

The albCre transgene, having Cre recombinase driven by the serum albumin (alb) gene promoter, is commonly used to generate adult mice having reliable hepatocyte‐specific recombination of loxP‐flanked (“floxed”) alleles. Based on previous studies, it has been unclear whether albCre transgenes are also reliable in fetal and juvenile mice. Perinatal liver undergoes a dynamic transition from being predominantly hematopoietic to predominantly hepatic. We evaluated Cre activity during this transition in albCre mice using a sensitive two‐color fluorescent reporter system. From fetal through adult stages, in situ patterns of Cre‐dependent recombination of the reporter closely matched expression of endogenous Alb mRNA or protein, indicating most or all hepatocytes, including those in fetal and juvenile livers, had expressed Cre and recombined the reporter. Our results indicate the albCre transgene is effective in converting simple floxed alleles in fetal and neonatal mice and is an appropriate tool for studies on hepatocyte development. genesis 47:789–792, 2009.


Free Radical Biology and Medicine | 2013

A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

Sonya V. Iverson; Sofi Eriksson; Jianqiang Xu; Justin R. Prigge; Emily A. Talago; Tesia A. Meade; Erin S. Meade; Mario R. Capecchi; Elias S.J. Arnér; Edward E. Schmidt

Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage.


Nature Medicine | 2017

Keap1 loss promotes Kras -driven lung cancer and results in dependence on glutaminolysis

Rodrigo Romero; Volkan I. Sayin; Shawn M. Davidson; Matthew R. Bauer; Simranjit X. Singh; Sarah LeBoeuf; Triantafyllia R. Karakousi; Donald Christian Ellis; Arjun Bhutkar; Francisco J. Sánchez-Rivera; Lakshmipriya Subbaraj; Britney Martinez; Roderick T. Bronson; Justin R. Prigge; Edward E. Schmidt; Craig J. Thomas; Chandra Goparaju; Angela M. Davies; Igor Dolgalev; Adriana Heguy; Viola Allaj; John T. Poirier; Andre L. Moreira; Charles M. Rudin; Harvey I. Pass; Matthew G. Vander Heiden; Tyler Jacks; Thales Papagiannakopoulos

Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR–Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR–Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.


Antioxidants & Redox Signaling | 2012

Thioredoxin reductase inhibition elicits Nrf2-mediated responses in Clara cells: implications for oxidant-induced lung injury.

Morgan L. Locy; Lynette K. Rogers; Justin R. Prigge; Edward E. Schmidt; Elias S.J. Arnér; Trent E. Tipple

AIMS Pulmonary oxygen toxicity contributes to lung injury in newborn and adult humans. We previously reported that thioredoxin reductase (TrxR1) inhibition with aurothioglucose (ATG) attenuates hyperoxic lung injury in adult mice. The present studies tested the hypothesis that TrxR1 inhibition protects against the effects of hyperoxia via nuclear factor E2-related factor 2 (Nrf2)-dependent mechanisms. RESULTS Both pharmacologic and siRNA-mediated TrxR1 inhibition induced robust Nrf2 responses in murine-transformed Clara cells (mtCC). While TrxR1 inhibition did not alter the susceptibility of cells to the effects of hyperoxia, glutathione (GSH) depletion after TrxR1 inhibition markedly enhanced the hyperoxic susceptibility of cultured mtCCs. Finally, in vivo data revealed dose-dependent increases in the expression of the Nrf2 target gene NADPH:quinone oxidoreductase 1 (NQO1) in the lungs of ATG-treated adult mice. INNOVATION TrxR1 inhibition activates Nrf2-dependent antioxidant responses in mtCCs in vitro and in adult murine lungs in vivo, providing a plausible mechanism for the protective effects of TrxR1 inhibition in vivo. CONCLUSION GSH-dependent enzyme systems in mtCCs may be of greater importance for protection against hyperoxic exposure than are TrxR-dependent systems. The induction of Nrf2 activation via TrxR1 inhibition represents a novel therapeutic strategy that attenuates oxidant-mediated lung injury. Similar expression levels of TrxR1 in newborn and adult mouse or human lungs broaden the potential clinical applicability of the present findings to both neonatal and adult oxidant lung injury.


Chemical Research in Toxicology | 2014

Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo.

Huadong Chen; Junsheng Fu; Hao Chen; Yuhui Hu; Dominique N. Soroka; Justin R. Prigge; Edward E. Schmidt; Feng Yan; Michael B. Major; Xiaoxin Chen; Shengmin Sang

In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography–tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2–/– mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms.


Journal of Biological Chemistry | 2006

Interaction of Protein Inhibitor of Activated STAT (PIAS) Proteins with the TATA-binding Protein, TBP

Justin R. Prigge; Edward E. Schmidt

Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP coimmunopreciptated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBPCORE and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors.


Comparative Biochemistry and Physiology B | 2002

Molecular analysis of the bison phagocyte NADPH oxidase: cloning and sequencing of five NADPH oxidase cDNAs

Katherine A. Gauss; Peggy L. Bunger; Daniel W. Siemsen; Catherine J. Young; Laura K. Nelson-Overton; Justin R. Prigge; Steve D. Swain; Mark T. Quinn

During the host defense process, neutrophils migrate into infected tissues where they become activated, resulting in the assembly of a superoxide anion-generating complex known as the NADPH oxidase. Despite the importance of this system in animal host defense, almost nothing is known about the NADPH oxidase in neutrophils from wild ruminant species. In the present studies, we provide a molecular analysis of the bison leukocyte NADPH oxidase. Using reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends, we cloned and sequenced the full-length cDNAs for five bison NADPH oxidase components: p22(phox), p40(phox), p47(phox) and p67(phox), and gp91(phox). When compared to other species, the deduced amino acid sequences of the bison homologs were most similar to those of bovine. Interestingly, a bison p40(phox) alternative splice product was isolated, which was similar to that observed for human p40(phox) in that the cDNAs contained sequence from intron 8. Consistent with the high degree of similarity between bison and bovine amino acid sequences, immunoblot analysis showed that the bison homologs migrated similarly to their bovine counterparts. Overall, these studies show that the bison and bovine NADPH oxidase genes are highly conserved between these two species, despite their divergence from a common ancestor over 1 million years ago.


Cell Reports | 2017

Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

Justin R. Prigge; Lucia Coppo; Sebastin S. Martin; Fernando T. Ogata; Colin G. Miller; Michael D. Bruschwein; David J. Orlicky; Colin T. Shearn; Jean A. Kundert; Julia Lytchier; Alix E. Herr; Åse Mattsson; Matthew P. Taylor; Tomas N. Gustafsson; Elias S.J. Arnér; Arne Holmgren; Edward E. Schmidt

SUMMARY Energetic nutrients are oxidized to sustain high intra-cellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1) disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1) and glutathione reductase (Gsr), respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null) causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

Collaboration


Dive into the Justin R. Prigge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Bhutkar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles M. Rudin

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge