Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjun Bhutkar is active.

Publication


Featured researches published by Arjun Bhutkar.


Cell | 2014

KRAS and YAP1 converge to regulate EMT and tumor survival

Diane D. Shao; Wen Xue; Elsa Beyer Krall; Arjun Bhutkar; Federica Piccioni; Xiaoxing Wang; Anna C. Schinzel; Sabina Sood; Joseph Rosenbluh; Jong W. Kim; Yaara Zwang; Thomas M. Roberts; David E. Root; Tyler Jacks; William C. Hahn

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.


Molecular Cell | 2011

Poly(ADP-Ribose) Regulates Stress Responses and MicroRNA Activity in the Cytoplasm

Anthony K. L. Leung; Sejal Vyas; Jennifer E. Rood; Arjun Bhutkar; Phillip A. Sharp; Paul Chang

Poly(ADP-ribose) is a major regulatory macromolecule in the nucleus, where it regulates transcription, chromosome structure, and DNA damage repair. Functions in the interphase cytoplasm are less understood. Here, we identify a requirement for poly(ADP-ribose) in the assembly of cytoplasmic stress granules, which accumulate RNA-binding proteins that regulate the translation and stability of mRNAs upon stress. We show that poly(ADP-ribose), six specific poly(ADP-ribose) polymerases, and two poly(ADP-ribose) glycohydrolase isoforms are stress granule components. A subset of stress granule proteins, including microRNA-binding Argonaute family members Ago1-4, are modified by poly(ADP-ribose), and such modification increases upon stress, a condition when both microRNA-mediated translational repression and microRNA-directed mRNA cleavage are relieved. Similar relief of repression is also observed upon overexpression of specific poly(ADP-ribose) polymerases or, conversely, upon knockdown of glycohydrolase. We conclude that poly(ADP-ribose) is a key regulator of posttranscriptional gene expression in the cytoplasm.


Nature | 2014

Rapid modelling of cooperating genetic events in cancer through somatic genome editing

Francisco J. Sánchez-Rivera; Thales Papagiannakopoulos; Rodrigo Romero; Tuomas Tammela; Matthew R. Bauer; Arjun Bhutkar; Nikhil S. Joshi; Lakshmipriya Subbaraj; Roderick T. Bronson; Wen Xue; Tyler Jacks

Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumour suppressor genes. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a KrasG12D-driven lung cancer model, we performed functional characterization of a panel of tumour suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic KrasG12D combined with CRISPR/Cas9-mediated genome editing of tumour suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalogue of mutations identified in cancer genome sequencing studies.


Genetics | 2008

Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes

Arjun Bhutkar; Stephen W. Schaeffer; Susan Russo; Mu Xu; Temple F. Smith; William M. Gelbart

The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.


Genetics | 2008

Polytene Chromosomal Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps

Stephen W. Schaeffer; Arjun Bhutkar; Bryant F. McAllister; Muneo Matsuda; Luciano M. Matzkin; Patrick M. O'Grady; Claudia Rohde; Vera L. S. Valente; Montserrat Aguadé; Wyatt W. Anderson; Kevin A. Edwards; Ana Cristina Lauer Garcia; Josh Goodman; James Hartigan; Eiko Kataoka; Richard T. Lapoint; Elena R. Lozovsky; Carlos A. Machado; Mohamed A. F. Noor; Montserrat Papaceit; Laura K. Reed; Stephen Richards; Tania T. Rieger; Susan Russo; Hajime Sato; Carmen Segarra; Douglas R. Smith; Temple F. Smith; Victor Strelets; Yoshiko N. Tobari

The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Mullers idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.


Cell | 2014

Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing

David G. McFadden; Thales Papagiannakopoulos; Amaro Taylor-Weiner; Chip Stewart; Scott L. Carter; Kristian Cibulskis; Arjun Bhutkar; Aaron McKenna; Alison L. Dooley; Amanda Vernon; Carrie Sougnez; Scott Malstrom; Megan Heimann; Jennifer Park; Frances K. Chen; Anna F. Farago; Talya L. Dayton; Erica Shefler; Stacey Gabriel; Gad Getz; Tyler Jacks

Small cell lung carcinoma (SCLC) is a highly lethal, smoking-associated cancer with few known targetable genetic alterations. Using genome sequencing, we characterized the somatic evolution of a genetically engineered mouse model (GEMM) of SCLC initiated by loss of Trp53 and Rb1. We identified alterations in DNA copy number and complex genomic rearrangements and demonstrated a low somatic point mutation frequency in the absence of tobacco mutagens. Alterations targeting the tumor suppressor Pten occurred in the majority of murine SCLC studied, and engineered Pten deletion accelerated murine SCLC and abrogated loss of Chr19 in Trp53; Rb1; Pten compound mutant tumors. Finally, we found evidence for polyclonal and sequential metastatic spread of murine SCLC by comparative sequencing of families of related primary tumors and metastases. We propose a temporal model of SCLC tumorigenesis with implications for human SCLC therapeutics and the nature of cancer-genome evolution in GEMMs.


Molecular Cell | 2011

Caspase-2-Mediated Cleavage of Mdm2 Creates a p53-Induced Positive Feedback Loop

Trudy G. Oliver; Etienne Meylan; Gregory P. Chang; Wen Xue; James R. Burke; Timothy J. Humpton; Diana Hubbard; Arjun Bhutkar; Tyler Jacks

Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress.


Cell Metabolism | 2016

Circadian Rhythm Disruption Promotes Lung Tumorigenesis

Thales Papagiannakopoulos; Matthew R. Bauer; Shawn M. Davidson; Megan Heimann; Lakshmipriya Subbaraj; Arjun Bhutkar; Jordan Me Bartlebaugh; Matthew G. Vander Heiden; Tyler Jacks

Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.


Cancer Cell | 2012

Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1.

Arvind Ravi; Allan M. Gurtan; Madhu S. Kumar; Arjun Bhutkar; Christine Chin; Victoria Lu; Jacqueline A. Lees; Tyler Jacks; Phillip A. Sharp

MicroRNAs are a class of short ~22 nucleotide RNAs predicted to regulate nearly half of all protein coding genes, including many involved in basal cellular processes and organismal development. Although a global reduction in miRNAs is commonly observed in various human tumors, complete loss has not been documented, suggesting an essential function for miRNAs in tumorigenesis. Here we present the finding that transformed or immortalized Dicer1 null somatic cells can be isolated readily in vitro, maintain the characteristics of DICER1-expressing controls and remain stably proliferative. Furthermore, Dicer1 null cells from a sarcoma cell line, though depleted of miRNAs, are competent for tumor formation. Hence, miRNA levels in cancer may be maintained in vivo by a complex stabilizing selection in the intratumoral environment.


Proceedings of the National Academy of Sciences of the United States of America | 2014

p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer

David G. McFadden; Amanda Vernon; Philip M. Santiago; Raul Martinez-McFaline; Arjun Bhutkar; Denise Crowley; Martin McMahon; Peter M. Sadow; Tyler Jacks

Significance We generated a thyroid-specific CreER transgenic mouse and used this strain to model progression of v-raf murine sarcoma viral oncogene homolog B (BRAF)-mutant papillary thyroid cancer to anaplastic thyroid cancer (ATC). These murine tumors recapitulated the temporal progression and molecular hallmarks of human ATC. We demonstrated that combined mapk/Erk kinase (MEK) and BRAF inhibition resulted in enhanced antitumor activity vs. single-agent BRAF inhibitors in this preclinical model. This model represents a previously lacking mouse model of BRAF-mutant ATC and adds to the experimental armamentarium of a highly lethal disease in need of scientific advances. These data also suggest that potent inhibition of the MAPK pathway may improve outcomes in advanced thyroid cancers. Anaplastic thyroid carcinoma (ATC) has among the worst prognoses of any solid malignancy. The low incidence of the disease has in part precluded systematic clinical trials and tissue collection, and there has been little progress in developing effective therapies. v-raf murine sarcoma viral oncogene homolog B (BRAF) and tumor protein p53 (TP53) mutations cooccur in a high proportion of ATCs, particularly those associated with a precursor papillary thyroid carcinoma (PTC). To develop an adult-onset model of BRAF-mutant ATC, we generated a thyroid-specific CreER transgenic mouse. We used a Cre-regulated BrafV600E mouse and a conditional Trp53 allelic series to demonstrate that p53 constrains progression from PTC to ATC. Gene expression and immunohistochemical analyses of murine tumors identified the cardinal features of human ATC including loss of differentiation, local invasion, distant metastasis, and rapid lethality. We used small-animal ultrasound imaging to monitor autochthonous tumors and showed that treatment with the selective BRAF inhibitor PLX4720 improved survival but did not lead to tumor regression or suppress signaling through the MAPK pathway. The combination of PLX4720 and the mapk/Erk kinase (MEK) inhibitor PD0325901 more completely suppressed MAPK pathway activation in mouse and human ATC cell lines and improved the structural response and survival of ATC-bearing animals. This model expands the limited repertoire of autochthonous models of clinically aggressive thyroid cancer, and these data suggest that small-molecule MAPK pathway inhibitors hold clinical promise in the treatment of advanced thyroid carcinoma.

Collaboration


Dive into the Arjun Bhutkar's collaboration.

Top Co-Authors

Avatar

Tyler Jacks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Sánchez-Rivera

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Phillip A. Sharp

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew G. Vander Heiden

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thales Papagiannakopoulos

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vasilena Gocheva

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Allan M. Gurtan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacqueline A. Lees

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge