Justin T. Harris
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin T. Harris.
Nano Letters | 2013
Matthew T. McDowell; Seok-Woo Lee; Justin T. Harris; Brian A. Korgel; Chongmin Wang; William D. Nix; Yi Cui
To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, the experiments reveal that the first lithiation occurs via a two-phase mechanism, which is contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation. On the basis of kinetics measurements, this behavior is suggested to be due to the rate-limiting effect of Si-Si bond breaking. In addition, the results show that amorphous Si has more favorable kinetics and fracture behavior when reacting with Li than does crystalline Si, making it advantageous to use in battery electrodes. Amorphous spheres up to 870 nm in diameter do not fracture upon lithiation; this is much larger than the 150 nm critical fracture diameter previously identified for crystalline Si spheres.
Journal of the American Chemical Society | 2011
Aaron M. Chockla; Justin T. Harris; Vahid A. Akhavan; Timothy D. Bogart; Vincent C. Holmberg; Chet Steinhagen; C. Buddie Mullins; Keith J. Stevenson; Brian A. Korgel
A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder.
Nature Communications | 2013
Lei Shi; Justin T. Harris; Roberto Fenollosa; Isabelle Rodriguez; Xiaotang Lu; Brian A. Korgel; Francisco Meseguer
It is generally accepted that the magnetic component of light has a minor role in the light-matter interaction. The recent discovery of metamaterials has broken this traditional understanding, as both the electric and the magnetic field are key ingredients in metamaterials. The top-down technology used so far employs noble metals with large intrinsic losses. Here we report on a bottom-up approach for processing metamaterials based on suspensions of monodisperse full dielectric silicon nanocavities with a large magnetic response in the near-infrared region. Experimental results and theory show that silicon-colloid-based liquid suspensions and photonic crystals made of two-dimensional arrays of particles have strong magnetic response in the near-infrared region with small optical losses. Our findings might have important implications in the bottom-up processing of large-area low-loss metamaterials working in the near-infrared region.
ACS Nano | 2013
Paul R. Abel; Aaron M. Chockla; Yong-Mao Lin; Vincent C. Holmberg; Justin T. Harris; Brian A. Korgel; Adam Heller; C. Buddie Mullins
Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The films composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.
ACS Applied Materials & Interfaces | 2011
Chet Steinhagen; Vahid A. Akhavan; Brian W. Goodfellow; Matthew G. Panthani; Justin T. Harris; Vincent C. Holmberg; Brian A. Korgel
CuInSe₂ (CIS) nanowires were synthesized by solution-liquid-solid (SLS) growth in a high boiling solvent using bismuth nanocrystals as seeds. The nanowires tended to be slightly deficient in In and exhibited either cubic or hexagonal crystal structure, depending on the synthesis conditions. The hexagonal structure, which is not observed in bulk crystals, appears to evolve from large concentrations of twin defects. The nanowires could be compressed into a free-standing fabric or paper-like material. Photovoltaic devices (PVs) were fabricated using the nanowires as the light-absorbing layer to test their viability as a solar cell material and were found to exhibit measurable PV response.
Journal of Colloid and Interface Science | 2018
Shehab Alzobaidi; Jason Lee; Summer Jiries; Chang Da; Justin T. Harris; Kaitlin Keene; Gianfranco Rodriguez; Eric J. Beckman; Robert James Perry; Keith P. Johnston; Robert M. Enick
The design of surfactants for CO2/oil emulsions has been elusive given the low CO2-oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO2/oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO2 and oil through a beadpack (CO2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C30 alkyl chains are CO2-insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO2-philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO2, with CO2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations.
Chemistry of Materials | 2012
Sankaran Murugesan; Justin T. Harris; Brian A. Korgel; Keith J. Stevenson
Journal of Physical Chemistry Letters | 2012
Chet Steinhagen; Taylor B. Harvey; C. Jackson Stolle; Justin T. Harris; Brian A. Korgel
Journal of Physical Chemistry C | 2012
Aaron M. Chockla; Matthew G. Panthani; Vincent C. Holmberg; Colin M. Hessel; Dariya K. Reid; Timothy D. Bogart; Justin T. Harris; C. Buddie Mullins; Brian A. Korgel
Chemistry of Materials | 2011
Aaron M. Chockla; Justin T. Harris; Brian A. Korgel