Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Taylor is active.

Publication


Featured researches published by Justin Taylor.


Nature Medicine | 2016

Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins.

Stanley Chun-Wei Lee; Heidi Dvinge; Eunhee Kim; Hana Cho; Jean-Baptiste Micol; Young Rock Chung; Benjamin H. Durham; Akihide Yoshimi; Young Joon Kim; Michael Thomas; Camille Lobry; Chun-Wei Chen; Alessandro Pastore; Justin Taylor; Xujun Wang; Andrei V. Krivtsov; Scott A. Armstrong; James Palacino; Silvia Buonamici; Peter G. Smith; Robert K. Bradley; Omar Abdel-Wahab

Mutations in genes encoding splicing factors (which we refer to as spliceosomal genes) are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations recurrently affect specific amino acid residues, leading to perturbed normal splice site and exon recognition. Spliceosomal gene mutations are always heterozygous and rarely occur together with one another, suggesting that cells may tolerate only a partial deviation from normal splicing activity. To test this hypothesis, we engineered mice to express a mutated allele of serine/arginine-rich splicing factor 2 (Srsf2P95H)—which commonly occurs in individuals with MDS and AML—in an inducible, hemizygous manner in hematopoietic cells. These mice rapidly succumbed to fatal bone marrow failure, demonstrating that Srsf2-mutated cells depend on the wild-type Srsf2 allele for survival. In the context of leukemia, treatment with the spliceosome inhibitor E7107 (refs. 7,8) resulted in substantial reductions in leukemic burden, specifically in isogenic mouse leukemias and patient-derived xenograft AMLs carrying spliceosomal mutations. Whereas E7107 treatment of mice resulted in widespread intron retention and cassette exon skipping in leukemic cells regardless of Srsf2 genotype, the magnitude of splicing inhibition following E7107 treatment was greater in Srsf2-mutated than in Srsf2-wild-type leukemia, consistent with the differential effect of E7107 on survival. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal gene mutations are preferentially susceptible to additional splicing perturbations in vivo as compared to leukemias without such mutations. Modulation of spliceosome function may thus provide a new therapeutic avenue in genetically defined subsets of individuals with MDS or AML.


Nature Medicine | 2018

H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers

Michael Seiler; Akihide Yoshimi; Rachel Darman; Betty Chan; Gregg F. Keaney; Mike Thomas; Anant A. Agrawal; Benjamin Caleb; Alfredo Csibi; Eckley Sean; Peter Fekkes; Craig Karr; Virginia M. Klimek; George Lai; Linda Lee; P.V. Kumar; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Shouyong Peng; Sudeep Prajapati; Justin Taylor; Teng Teng; John Q. Wang; Markus Warmuth

Genomic analyses of cancer have identified recurrent point mutations in the RNA splicing factor–encoding genes SF3B1, U2AF1, and SRSF2 that confer an alteration of function. Cancer cells bearing these mutations are preferentially dependent on wild-type (WT) spliceosome function, but clinically relevant means to therapeutically target the spliceosome do not currently exist. Here we describe an orally available modulator of the SF3b complex, H3B-8800, which potently and preferentially kills spliceosome-mutant epithelial and hematologic tumor cells. These killing effects of H3B-8800 are due to its direct interaction with the SF3b complex, as evidenced by loss of H3B-8800 activity in drug-resistant cells bearing mutations in genes encoding SF3b components. Although H3B-8800 modulates WT and mutant spliceosome activity, the preferential killing of spliceosome-mutant cells is due to retention of short, GC-rich introns, which are enriched for genes encoding spliceosome components. These data demonstrate the therapeutic potential of splicing modulation in spliceosome-mutant cancers.


Blood | 2017

Diagnosis and classification of hematologic malignancies on the basis of genetics

Justin Taylor; Wenbin Xiao; Omar Abdel-Wahab

Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1- MPNs, which are largely defined by mutations in JAK2, CALR, or MPL In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63 Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.


Blood | 2017

Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML

Akihide Yoshimi; Maria Balasis; Alexis Vedder; Kira Feldman; Yan Ma; Hailing Zhang; Stanley Chun-Wei Lee; Christopher Letson; Sandrine Niyongere; Sydney X. Lu; Markus Ball; Justin Taylor; Qing Zhang; YuLong Zhao; Salma Youssef; Young Rock Chung; Xiao Jing Zhang; Benjamin H. Durham; Wendy Yang; Alan F. List; Mignon L. Loh; Virginia M. Klimek; Michael F. Berger; Elliot Stieglitz; Eric Padron; Omar Abdel-Wahab

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Blood | 2017

Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations

Benjamin H. Durham; Bartlomiej M. Getta; Sascha Dietrich; Justin Taylor; Helen H. Won; James M Bogenberger; Sasinya N. Scott; Eunhee Kim; Young Rock Chung; Stephen S. Chung; Jennifer Hüllein; Tatjana Walther; Lu Wang; Sydney X. Lu; Christopher C. Oakes; Raoul Tibes; Torsten Haferlach; Barry S. Taylor; Martin S. Tallman; Michael F. Berger; Jae H. Park; Thorsten Zenz; Omar Abdel-Wahab

Classical hairy cell leukemia (cHCL) is characterized by a near 100% frequency of the BRAFV600E mutation, whereas ∼30% of variant HCLs (vHCLs) have MAP2K1 mutations. However, recurrent genetic alterations cooperating with BRAFV600E or MAP2K1 mutations in HCL, as well as those in MAP2K1 wild-type vHCL, are not well defined. We therefore performed deep targeted mutational and copy number analysis of cHCL (n = 53) and vHCL (n = 8). The most common genetic alteration in cHCL apart from BRAFV600E was heterozygous loss of chromosome 7q, the minimally deleted region of which targeted wild-type BRAF, subdividing cHCL into those hemizygous versus heterozygous for the BRAFV600E mutation. In addition to CDKN1B mutations in cHCL, recurrent inactivating mutations in KMT2C (MLL3) were identified in 15% and 25% of cHCLs and vHCLs, respectively. Moreover, 13% of vHCLs harbored predicted activating mutations in CCND3 A change-of-function mutation in the splicing factor U2AF1 was also present in 13% of vHCLs. Genomic analysis of de novo vemurafenib-resistant cHCL identified a novel gain-of-function mutation in IRS1 and losses of NF1 and NF2, each of which contributed to resistance. These data provide further insight into the genetic bases of cHCL and vHCL and mechanisms of RAF inhibitor resistance encountered clinically.


Journal of Clinical Investigation | 2018

Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies

Justin Taylor; Dean Pavlick; Akihide Yoshimi; Christina Marcelus; Stephen S. Chung; Jaclyn F. Hechtman; Ryma Benayed; Emiliano Cocco; Benjamin H. Durham; Lillian Bitner; Daichi Inoue; Young Rock Chung; Kerry Mullaney; Justin M. Watts; Eli L. Diamond; Lee A. Albacker; Tariq I. Mughal; Kevin Ebata; Brian B. Tuch; Nora Ku; Maurizio Scaltriti; Mikhail Roshal; Maria E. Arcila; Siraj M. Ali; David M. Hyman; Jae H. Park; Omar Abdel-Wahab

Rearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown. Here, through an evaluation for TRK fusions across more than 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma, and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively, TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.


bioRxiv | 2018

High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations

Anna S. Nam; K.-W. Kim; Ronan Chaligne; Franco Izzo; Chelston Ang; Ghaith Abu-Zeinah; Nathaniel D. Omans; Alessandro Pastore; Justin Taylor; Alicia Alonso; Marisa Mariani; Juan R. Cubillos-Ruiz; Wayne Tam; Ronald Hoffman; Joseph M. Scandura; Raul Rabadan; Omar Abdel-Wahab; Peter Smibert; Dan A. Landau

Defining the transcriptomic identity of clonally related malignant cells is challenging in the absence of cell surface markers that distinguish cancer clones from one another or from admixed non-neoplastic cells. While single-cell methods have been devised to capture both the transcriptome and genotype, these methods are not compatible with droplet-based single-cell transcriptomics, limiting their throughput. To overcome this limitation, we present single-cell Genotyping of Transcriptomes (GoT), which integrates cDNA genotyping with high-throughput droplet-based single-cell RNA-seq. We further demonstrate that multiplexed GoT can interrogate multiple genotypes for distinguishing subclonal transcriptomic identity. We apply GoT to 26,039 CD34+ cells across six patients with myeloid neoplasms, in which the complex process of hematopoiesis is corrupted by CALR-mutated stem and progenitor cells. We define high-resolution maps of malignant versus normal hematopoietic progenitors, and show that while mutant cells are comingled with wildtype cells throughout the hematopoietic progenitor landscape, their frequency increases with differentiation. We identify the unfolded protein response as a predominant outcome of CALR mutations, with significant cell identity dependency. Furthermore, we identify that CALR mutations lead to NF-κB pathway upregulation specifically in uncommitted early stem cells. Collectively, GoT provides high-throughput linkage of single-cell genotypes with transcriptomes and reveals that the transcriptional output of somatic mutations is heavily dependent on the native cell identity.


Leukemia | 2018

Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia

Alexander Leeksma; Justin Taylor; Bian Wu; Jeffrey R. Gardner; Jie He; Michelle Nahas; Mithat Gonen; Wendimagegn Ghidey Alemayehu; Doreen te Raa; Tatjana Walther; Jennifer Hüllein; Sascha Dietrich; Rainer Claus; Fransien de Boer; Koen de Heer; Julie Dubois; Maria Dampmann; Jan Dürig; Marinus H. J. van Oers; Christian H. Geisler; Eric Eldering; Ross L. Levine; Vincent A. Miller; Tariq I Mughal; Nicole Lamanna; Mark G. Frattini; Mark L. Heaney; Andrew D. Zelenetz; T. Zenz; Omar Abdel-Wahab

Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p < 0.001) and SF3B1 (20 vs. 11%, p < 0.05) and increased number of (sub)clonal (p < 0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 “progressors” and 17 matched “non-progressors”) using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p < 0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.


Cancer Research | 2017

Abstract 1185: H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers

Silvia Buonamici; Akihide Yoshimi; Mike Thomas; Michael Seiler; Betty Chan; Benjamin Caleb; Fred Csibi; Rachel Darman; Peter Fekkes; Craig Karr; Gregg F. Keaney; Amy Kim; Virginia M. Klimek; P.V. Kumar; Kaiko Kunii; Stanley Chun-Wei Lee; Xiang Liu; Crystal MacKenzie; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Sudeep Prajapati; Nathalie Rioux; Justin Taylor; John Q. Wang; Markus Warmuth; Huilan Yao; Lihua Yu

Genomic characterization of hematologic and solid cancers has revealed recurrent somatic mutations affecting genes encoding the RNA splicing factors SF3B1, U2AF1, SRSF2 and ZRSR2. Recent data reveal that these mutations confer an alteration of function inducing aberrant splicing and rendering spliceosome mutant cells preferentially sensitive to splicing modulation compared with wildtype (WT) cells. Here we describe a novel orally bioavailable small molecule SF3B1 modulator identified through a medicinal chemistry effort aimed at optimizing compounds for preferential lethality in spliceosome mutant cells. H3B-8800 potently binds to WT or mutant SF3b complexes and modulates splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. The selectivity of H3B-8800 was confirmed by observing lack of activity in cells expressing SF3B1R1074H, the SF3B1 mutation previously shown to confer resistance to other splicing modulators. Although H3B-8800 binds both WT and mutant SF3B1, it results in preferential lethality of cancer cells expressing SF3B1K700E, SRSF2P95H, or U2AF1S34F mutations compared to WT cells. In animals xenografted with SF3B1K700E knock-in leukemia K562 cells or mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, oral H3B-8800 treatment demonstrated splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. These data were also evident in patient-derived xenografts (PDX) from patients with CMML where H3B-8800 resulted in a substantial reduction of leukemic burden only in SRSF2-mutant but not in WT CMML PDX models. Additionally, due to the high frequency of U2AF1 mutations in non-small cell lung cancer, H3B-8800 was tested in U2AF1S34F-mutant H441 lung cancer cells. Similar to the results from leukemia models, H3B-8800 demonstrated preferential lethality of U2AF1-mutant cells in vitro and in in vivo orthotopic xenografts at well tolerated doses. RNA-seq of isogenic K562 cells treated with H3B-8800 revealed dose-dependent inhibition of splicing. Although global inhibition of RNA splicing was not observed; H3B-8800 treatment led to preferential intron retention of transcripts with shorter and more GC-rich regions compared to those unaffected by drug. Interestingly, H3B-8800-retained introns commonly disrupted the expression of spliceosomal genes, suggesting that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the dependency of these cells on expression of WT spliceosomal genes. These data identify a novel therapeutic approach with selective lethality in leukemias and lung cancers bearing a spliceosome mutation. Despite the essential nature of splicing, cancer cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML, and CMML. Citation Format: Silvia Buonamici, Akihide Yoshimi, Michael Thomas, Michael Seiler, Betty Chan, Benjamin Caleb, Fred Csibi, Rachel Darman, Peter Fekkes, Craig Karr, Gregg Keaney, Amy Kim, Virginia Klimek, Pavan Kumar, Kaiko Kunii, Stanley Chun-Wei Lee, Xiang Liu, Crystal MacKenzie, Carol Meeske, Yoshiharu Mizui, Eric Padron, Eunice Park, Ermira Pazolli, Sudeep Prajapati, Nathalie Rioux, Justin Taylor, John Wang, Markus Warmuth, Huilan Yao, Lihua Yu, Ping Zhu, Omar Abdel-Wahab, Peter Smith. H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1185. doi:10.1158/1538-7445.AM2017-1185


Blood | 2016

H3B-8800, an Orally Bioavailable Modulator of the SF3b Complex, Shows Efficacy in Spliceosome-Mutant Myeloid Malignancies

Silvia Buonamici; Akihide Yoshimi; Mike Thomas; Michael Seiler; Betty Chan; Benjamin Caleb; Rachel Darman; Peter Fekkes; Craig Karr; Gregg F. Keaney; Virginia M. Klimek; Kaiko Kunii; Linda Lee; Stanley Chun-Wei Lee; Xiang Liu; Carol Meeske; Yoshiharu Mizui; Eric Padron; Eunice Park; Ermira Pazolli; Sudeep Prajapati; Justin Taylor; John Q. Wang; Markus Warmuth; Lihua Yu; Ping Zhu; Omar Abdel-Wahab; P.G.R. Smith

Collaboration


Dive into the Justin Taylor's collaboration.

Top Co-Authors

Avatar

Omar Abdel-Wahab

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Akihide Yoshimi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Stanley Chun-Wei Lee

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin H. Durham

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Young Rock Chung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric Padron

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virginia M. Klimek

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alessandro Pastore

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge