Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justine Thiry is active.

Publication


Featured researches published by Justine Thiry.


International Journal of Pharmaceutics | 2015

A review of pharmaceutical extrusion: Critical process parameters and scaling-up

Justine Thiry; Fabrice Krier; Brigitte Evrard

Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed.


European Journal of Pharmaceutical Sciences | 2016

Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions.

Justine Thiry; Guy Broze; Aude Pestieau; Andrew S. Tatton; Christian Damblon; Fabrice Krier; Brigitte Evrard

The difficulty to find a relevant in vitro dissolution test to evaluate poorly soluble drugs is a well-known issue. One way to enhance their aqueous solubility is to formulate them as amorphous solid dispersions. In this study, three formulations containing itraconazole (ITZ), a model drug, were tested in seven different conditions (different USP apparatuses and different media). Two of the formulations were amorphous solid dispersions namely Sporanox®, the marketed product, and extrudates composed of Soluplus® and ITZ produced by hot melt extrusion; and the last one was pure crystalline ITZ capsules. After each test, a ranking of the formulations was established. Surprisingly, the two amorphous solid dispersions exhibited very different behavior depending primarily on the dissolution media. Indeed, the extrudates showed a better release profile than Sporanox® in non-sink and in biphasic conditions, whilst Sporanox® showed a higher release profile than the extrudates in sink and fasted simulated gastric conditions. The disintegration, dynamic light scattering and nuclear magnetic resonance results highlighted the presence of interaction between the surfactants and Soluplus®, which slowed down the erosion of the polymer matrix. Indeed, the negative charge of sodium dodecyl sulfate (SDS) and bile salts interacted with the surface of the extrudates that formed a barrier through which the water hardly diffused. Moreover, Soluplus® and SDS formed mixed micelles in solution in which ITZ interacts with SDS, but no longer with Soluplus®. Regarding the biphasic dissolution test, the interactions between the octanol dissolved in the aqueous media disrupted the polymer--ITZ system leading to a reduced release of ITZ from Sporanox®, whilst it had no influence on the extrudates. All together these results pointed out the difficulty of finding a suitable in vitro dissolution test due to interactions between the excipients that complicates the prediction of the behavior of these solid dispersions in vivo.


International Journal of Pharmaceutics | 2013

PAT tools for the control of co-extrusion implants manufacturing process

Fabrice Krier; Jérôme Mantanus; Pierre-Yves Sacre; Pierre-François Chavez; Justine Thiry; Aude Pestieau; Eric Rozet; Eric Ziemons; Philippe Hubert; Brigitte Evrard

Hot melt extrusion is a novel pharmaceutical manufacturing process technique. In this study, we identified four Critical Quality Attributes (CQAs) of the implant manufacturing process by hot melt extrusion: the implant diameter, the quantity of the Active Pharmaceutical Ingredient (API), the homogeneity distribution of API and the thickness of the membrane. We controlled the implant diameter and the quantity of API in-line with a laser measurement, NIR and Raman spectroscopy, respectively. These two different spectroscopic techniques provided comparable results. In fact, the RMSEC and RMSECV were very close in each PAT technique but NIR spectroscopy was easier to use and less sensitive to external changes. For the control of the homogeneity of API distribution and the thickness of the membrane, we used successfully Raman spectroscopy imaging. These PAT tools help reducing analysis time.


European Journal of Pharmaceutical Sciences | 2017

Bioavailability enhancement of itraconazole-based solid dispersions produced by hot melt extrusion in the framework of the Three Rs rule.

Justine Thiry; Miranda G.M. Kok; Laurence Collard; Antoine Frère; Fabrice Krier; Marianne Fillet; Brigitte Evrard

Abstract Solid dispersion formulations made of itraconazole (ITZ) and Soluplus® (polyethylene glycol, polyvinyl acetate and polyvinylcaprolactame‐based graft copolymer abbreviated SOL) were produced using hot melt extrusion. Since ITZ possesses a water solubility of less than 1 ng/mL, the aim of this work was to enhance the aqueous solubility of ITZ, and thereby improve its bioavailability. The three formulations consisted of a simple SOL/ITZ amorphous solid dispersion (ASD), an optimized SOL/ITZ/AcDiSol® (super‐disintegrant) ASD and an equimolar inclusion complex of ITZ in hydroxypropyl‐&bgr;‐cyclodextrin (substitution degree = 0.63, CD) with SOL. The three formulations were compared in vitro and in vivo to the marketed product Sporanox®. The in vitro enhancement of dissolution rate was evaluated using a biphasic dissolution test. In vitro dissolution results showed that all three formulations had a higher percentage of ITZ released than Sporanox® with the following ranking: SOL/ITZ/CD > SOL/ITZ/AcDiSol® > SOL/ITZ > Sporanox®. The bioavailability of these four formulations was evaluated in rats. The bioanalytical method was optimized so that only 10 &mgr;L of blood was withdrawn from the rats using specific volumetric absorptive microsampling devices. This enabled to keep the same rats during the whole study, which was in accordance with the Three Rs rules (reduction, refinement and replacement). Furthermore, this technique allowed the suppression of inter‐individual variability. Higher Cmax and AUC were obtained after the administration of all three formulations compared to the levels after the use of Sporanox® as follows: SOL/ITZ/AcDiSol® > SOL/ITZ/CD > SOL/ITZ > Sporanox®. The inversion in the ranking between SOL/ITZ/CD and SOL/ITZ/AcDiSol® made impossible the establishment of an in vitro–vivo correlation. Indeed, very different release rates were obtained in vitro and in vivo for the two optimized formulations. These results suggest that ITZ would be protected inside the core of the SOL micelles even during the absorption step at the intestine, while some agents present in the intestinal fluids could displace ITZ from the hydrophobic cavity of CD by competition.


International Journal of Pharmaceutics | 2016

Continuous Production of Itraconazole-based Solid Dispersions by Hot Melt Extrusion: Preformulation, Optimization and Design Space Determination.

Justine Thiry; Pierre Lebrun; Chloe Vinassa; Marine Adam; Lauranne Netchacovitch; Eric Ziemons; Philippe Hubert; Fabrice Krier; Brigitte Evrard

The purpose of this work was to increase the solubility and the dissolution rate of itraconazole, which was chosen as the model drug, by obtaining an amorphous solid dispersion by hot melt extrusion. Therefore, an initial preformulation study was conducted using differential scanning calorimetry, thermogravimetric analysis and Hansens solubility parameters in order to find polymers which would have the ability to form amorphous solid dispersions with itraconazole. Afterwards, the four polymers namely Kollidon® VA64, Kollidon® 12PF, Affinisol® HPMC and Soluplus®, that met the set criteria were used in hot melt extrusion along with 25wt.% of itraconazole. Differential scanning confirmed that all four polymers were able to amorphize itraconazole. A stability study was then conducted in order to see which polymer would keep itraconazole amorphous as long as possible. Soluplus® was chosen and, the formulation was fine-tuned by adding some excipients (AcDiSol®, sodium bicarbonate and poloxamer) during the hot melt extrusion process in order to increase the release rate of itraconazole. In parallel, the range limits of the hot melt extrusion process parameters were determined. A design of experiment was performed within the previously defined ranges in order to optimize simultaneously the formulation and the process parameters. The optimal formulation was the one containing 2.5wt.% of AcDiSol® produced at 155°C and 100rpm. When tested with a biphasic dissolution test, more than 80% of itraconazole was released in the organic phase after 8h. Moreover, this formulation showed the desired thermoformability value. From these results, the design space around the optimum was determined. It corresponds to the limits within which the process would give the optimized product. It was observed that a temperature between 155 and 170°C allowed a high flexibility on the screw speed, from about 75 to 130rpm.


European Journal of Pharmaceutical Sciences | 2017

Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes.

Justine Thiry; Fabrice Krier; Shenelka Ratwatte; Jean-Michel Thomassin; Christine Jérôme; Brigitte Evrard

&NA; The aim of this study was to evaluate hot‐melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus® (SOL). The CD used in this series of experiments were &bgr;‐cyclodextrin (&bgr;CD), hydroxypropyl‐&bgr;‐cyclodextrin (HP&bgr;CD) with degrees of substitution of 0.63 and 0.87, randomly methylated &bgr;‐cyclodextrin (Rameb®), sulfobutylether‐&bgr;‐cyclodextrin (Captisol®) and methyl‐&bgr;‐cyclodextrin (Crysmeb®). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol® and Crysmeb® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18 mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HP&bgr;CD 0.63 and Rameb® even reached 95% of ITZ released in both phases after 1 h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra‐red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Graphical abstract Figure. No caption available.


Journal of Chromatography A | 2017

Sampling only ten microliters of whole blood for the quantification of poorly soluble drugs: Itraconazole as case study

Justine Thiry; Brigitte Evrard; Gwenaël Nys; Marianne Fillet; Miranda G.M. Kok

Nowadays in animal studies, it is important to comply with the so-called Three Rs rule by replacing or reducing the number of tested animals. Volumetric absorptive microsampling (VAMS) can be used to collect small quantities (10 or 20μL) of whole blood, thereby limiting the amount of animals needed. In this study, a quantitative method was developed and subsequently validated for the poorly soluble drug itraconazole (ITZ) using VAMS and ultra-high performance liquid chromatography (UHPLC) coupled to tandem mass spectrometry (MS). A proof of concept study showed that the optimized method is applicable to test the bioavailability of drug formulations containing ITZ. Using VAMS, smaller blood volumes can be taken per sampling point (10-20μL instead of the conventional 0.2-0.5mL) avoiding the sacrifice of animals. Moreover, the same rats can be used to compare different drug formulations which strengthens the validity of the results. In long-term bioavailability studies, it is necessary to guarantee the stability of the tested drugs supported on VAMS devices. In this study, we show that ITZ was only stable for 24h after collection with VAMS, but for at least two weeks by the storage of extracted samples at -80°C.


International Journal of Pharmaceutics | 2017

Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by Hot-Melt Extrusion using transmission Raman spectroscopy: A feasibility study.

Lauranne Netchacovitch; Elodie Dumont; Johan Cailletaud; Justine Thiry; C. De Bleye; Pierre-Yves Sacre; M. Boiret; Brigitte Evrard; Ph. Hubert; Eric Ziemons

The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates

Lauranne Netchacovitch; Justine Thiry; C. De Bleye; Pierre-François Chavez; Fabrice Krier; Pierre-Yves Sacre; Brigitte Evrard; Ph. Hubert; Eric Ziemons

Since the last decade, more and more Active Pharmaceutical Ingredient (API) candidates have poor water solubility inducing low bioavailability. These molecules belong to the Biopharmaceutical Classification System (BCS) classes II and IV. Thanks to Hot-Melt Extrusion (HME), it is possible to incorporate these candidates in pharmaceutical solid forms. Indeed, HME increases the solubility and the bioavailability of these drugs by encompassing them in a polymeric carrier and by forming solid dispersions. Moreover, in 2004, the FDAs guidance initiative promoted the usefulness of Process Analytical Technology (PAT) tools when developing a manufacturing process. Indeed, the main objective when developing a new pharmaceutical process is the product quality throughout the production chain. The trend is to follow this parameter in real-time in order to react immediately when there is a bias. Vibrational spectroscopic techniques, NIR and Raman, are useful to analyze processes in-line. Moreover, off-line Raman microspectroscopy is more and more used when developing new pharmaceutical processes or when analyzing optimized ones by combining the advantages of Raman spectroscopy and imaging. It is an interesting tool for homogeneity and spatial distribution studies. This review treats about spectroscopic techniques analyzing a HME process, as well off-line as in-line, presenting their advantages and their complementarities.


Talanta | 2017

Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process

Lauranne Netchacovitch; Justine Thiry; C. De Bleye; Elodie Dumont; Johan Cailletaud; Pierre-Yves Sacre; Brigitte Evrard; Ph. Hubert; Eric Ziemons

Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses.

Collaboration


Dive into the Justine Thiry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge