Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. D. Patel is active.

Publication


Featured researches published by K. D. Patel.


INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics | 2016

Growth and surface topography of WSe2 single crystal

Vijay Dixit; Chirag Vyas; Pratik Pataniya; Mihir Jani; Vishal Pathak; Abhishek Patel; V.M. Pathak; K. D. Patel; G. K. Solanki

Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50u2005K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe2 crystals. Single crystalline nature of the crystals was confirmed by SAED.


Archive | 2018

Growth and photo-response of NbSe2 and NbS2 crystals

Kunjal Patel; G. K. Solanki; Pratik Pataniya; K. D. Patel

Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurrent-voltage characteristics in a PEC solar cell structure (Cu/NbSe2/(0.1M K4Fe(CN)6 + 0.1M K3Fe(CN)6) and Cu/NbS2/(0.1M K4Fe(CN)6 +0.1M K3Fe(CN)6)). Blue coloured light gave the maximum efficiency. For further analysis of photodetection properties of the grown crystals, Ag painted broad low contact resistance electrical contacts were drawn from the crystals and its transient photoresponse was studied to evaluate different detector parameters.Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurr...


Archive | 2018

Investigation of transient photoresponse of WSSe ternary alloy crystals

Payal Chauhan; G. K. Solanki; Mohit Tannarana; Pratik Pataniya; K. D. Patel; V.M. Pathak

Transition metal chalcogenides have been studied intensively in recent time due to their tunability of electronic properties by compositional change, alloying and by transforming bulk material into crystalline 2D structure. These changes lead to the development of verities of next generation opto-electronic device applications such as solar cells, FETs and flexible detectors etc. In present work, we report growth and characterization of crystalline ternary alloy WSSe by direct vapour transport technique. A photodetector is constructed using grown crystals to study its transient photoresponse under polychromatic radiation. The WSSe crystals are mechanically exfoliated to thickness of 3u2005µm and the lateral dimension of prepared sample is 2.25u2005mm2. The time-resolved photoresponse is studied under polychromatic illumination of power density ranging from 10 to 40u2005mW/cm2. The photo response is also studied under different bias voltages ranging from 0.1u2005V to 0.5u2005V. The typical photodetector parameters i.e. photocurrent, rise and fall time, responsivity and sensitivity are evaluated and discussed in light of the ternary alloy composition.Transition metal chalcogenides have been studied intensively in recent time due to their tunability of electronic properties by compositional change, alloying and by transforming bulk material into crystalline 2D structure. These changes lead to the development of verities of next generation opto-electronic device applications such as solar cells, FETs and flexible detectors etc. In present work, we report growth and characterization of crystalline ternary alloy WSSe by direct vapour transport technique. A photodetector is constructed using grown crystals to study its transient photoresponse under polychromatic radiation. The WSSe crystals are mechanically exfoliated to thickness of 3u2005µm and the lateral dimension of prepared sample is 2.25u2005mm2. The time-resolved photoresponse is studied under polychromatic illumination of power density ranging from 10 to 40u2005mW/cm2. The photo response is also studied under different bias voltages ranging from 0.1u2005V to 0.5u2005V. The typical photodetector parameters i.e. photoc...


Archive | 2018

Effect of doping on all TMC vertical heterointerfaces

Salil Nair; Jolly Joy; K. D. Patel; Pratik Pataniya; G. K. Solanki; V.M. Pathak; C. K. Sumesh

The present work reports the growth and basic characterizations of GeSePbx (x=0, 0.02, 0.04) layered mono chalcogenide single crystal substrates for preparation of heterojunction devices. These crystals are grown by Direct Vapour Transport (DVT) Technique [1,2]. Heterojunction interfaces on these substrates are prepared using thermal evaporation of nanocrystalline SnSe thin films having 5kA thickness. The electrical characterizations reveal the rectifying behavior of the devices based on which its ideality factor, barrier height, saturation current, series resistance etc. have been determined using thermionic emission model [3,4]. The device parameters have been determined and analyzed by three different methods viz. LnI-V, Cheung’s method and Norde method [5]. The variation in the device parameters in light of doping is reported in the present work.The present work reports the growth and basic characterizations of GeSePbx (x=0, 0.02, 0.04) layered mono chalcogenide single crystal substrates for preparation of heterojunction devices. These crystals are grown by Direct Vapour Transport (DVT) Technique [1,2]. Heterojunction interfaces on these substrates are prepared using thermal evaporation of nanocrystalline SnSe thin films having 5kA thickness. The electrical characterizations reveal the rectifying behavior of the devices based on which its ideality factor, barrier height, saturation current, series resistance etc. have been determined using thermionic emission model [3,4]. The device parameters have been determined and analyzed by three different methods viz. LnI-V, Cheung’s method and Norde method [5]. The variation in the device parameters in light of doping is reported in the present work.


Archive | 2018

Structural, compositional and optical properties of spin coated MoO3 thin film

Vishva Jain; Dimple Shah; K. D. Patel; Chetan Zankat

The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600u2005rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50u2005nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416u2005nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600u2005rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50u2005nm. The com...


Archive | 2018

Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique

Vijay Dixit; Chirag Vyas; Abhishek Patel; V.M. Pathak; G. K. Solanki; K. D. Patel

Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40u2005mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40u2005mW/cm2) of photode...


Archive | 2018

Structural and optical properties of WTe2 single crystals synthesized by DVT technique

Vijay Dixit; Chirag Vyas; V.M. Pathak; G. K. Soalanki; K. D. Patel

Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.


Archive | 2018

Photosensitive space charge limited current in screen printed CdTe thin films

Chirag Vyas; Pratik Pataniya; Chetan K. Zankat; Alkesh B. Patel; V.M. Pathak; K. D. Patel; G. K. Solanki

Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied ...


FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials | 2017

Preparation of H2SO4 doped Polyaniline thin film solar cells by spin coating technique

Abhishek Patel; Pratik Pataniya; K. D. Patel; G. K. Solanki; V.M. Pathak

A water diluted H2SO4 solution was used to dissolve Polyaniline in order to obtain a solution for preparation of thin films by spin coating technique. The chemical bonding characteristics of the prepared films were investigated using Furrier transform infrared spectroscopy (FTIR) and the structural characterizations were accomplished by X-ray diffraction (XRD). UV-VIS absorption spectroscopy was used to determine the optical band gap of the deposited PANi films and the indirect optical band gap of PANi was estimated to be in the range of 1.3 to 1.8 eV from the Tauc’s plot. Further, these films were deposited on the n-MoSe2 crystal in order to complete a solar cell structure. The polychromatic photo response of the prepared solar cells for different intensities was studied at room temperature and the efficiency and fill factor were found to be 1% and 0.26 respectively. The obtained Photo-conversion characteristics (I-V) were also used to determined series and shunt resistances of the prepared device. The s...


Materials Research Express | 2017

Crystal growth, characterization and photo detection properties of 2H–V0.75W0.25Se2 ternary alloy with 1T–VSe2 secondary phase

Pratik Pataniya; G. K. Solanki; K. D. Patel; V.M. Pathak; C. K. Sumesh

Collaboration


Dive into the K. D. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

V.M. Pathak

Sardar Patel University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chirag Vyas

Sardar Patel University

View shared research outputs
Top Co-Authors

Avatar

C. K. Sumesh

Charotar University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Prafulla K. Jha

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jolly Joy

Sardar Patel University

View shared research outputs
Researchain Logo
Decentralizing Knowledge