K. Derecka
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by K. Derecka.
Reproduction | 2000
S T Leung; K. Derecka; G.E. Mann; A.P.F. Flint; D C Wathes
Both the production of cytokines and the distribution of immune cells within the uterus change during early pregnancy. Evidence obtained mainly from mice indicates that these changes are important for implantation and in preventing a maternal immune response to the conceptus. The ruminant embryo also produces interferon tau at this time, the signal for the maternal recognition of pregnancy. The relationship between these events in cows was studied using uteri from three groups of animals on day 16 after observed oestrus: (i) cyclic controls, (ii) pregnant and (iii) inseminated but with no embryo present. Embryo size and the antiviral activity in uterine flushings (indicative of the interferon tau concentration) were measured. Sections of intact uterus were frozen for the localization and quantitation of CD4(+) (T lymphocytes), CD14(+) (macrophages) and CD21(+) (B lymphocytes) uterine cells by immunohistochemistry. The expression of interleukin (IL)-1alpha, IL-2, IL-6 and IL-10 mRNAs in uterine extracts was measured by RT-PCR. Neither embryo size, interferon tau concentration nor pregnancy status influenced the distribution of CD4(+), CD14(+) or CD21(+) cells in the day 16 uterus. Endometrial IL-1alpha mRNA was detected in most cows across the groups, whereas IL-2 mRNA was only present in the non-pregnant uterus. IL-6 and IL-10 mRNAs were not detectable in any uteri. In conclusion, IL-2 mRNA expression is detectable in the non-pregnant but not the pregnant uterus on day 16 and interferon t is unlikely to play a role in the redistribution of immune cells in the uterus during early bovine pregnancy.
PLOS ONE | 2013
K. Derecka; Martin J. Blythe; Sunir Malla; Diane P. Genereux; Alessandro Guffanti; Paolo Pavan; Anna Moles; Charles J.P. Snart; Thomas Ryder; Catharine A. Ortori; David A. Barrett; Eugene Schuster; Reinhard Stöger
The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.
Animal Genetics | 2010
K. Derecka; Shakil Ahmad; T.C. Hodgman; N. Hastings; Melissa Royal; John Woolliams; A.P.F. Flint
Seven sequence variants (SVs) have been identified in exon 1 and in the promoter region upstream of the bovine gonadotrophin releasing hormone (GnRH) receptor gene, at nucleotides g.-331A>G, g.-108T>C, g.+206G>A, g.+260C>T, g.+341C>T, g.+383C>T and g.+410C>T relative to the translation start site. The SVs at nucleotides g.-108, g.260, g.341 and g.410 and those at g.206 and g.383 formed two groups with complete linkage disequilibrium within groups, but incomplete linkage disequilibrium between groups, and none of the SVs altered receptor amino acid sequence. The g.-108T>C allelic variants were associated with an approximately 0.4 day reduction in predicted transmitting ability for days to first service. None of the allelic variants affected the pattern of circulating LH following administration of GnRH. The g.260C>T alteration introduced a new transcription factor binding site in a region of DNA with relatively low nucleosome formation potential. The data suggest that selection for animals carrying the g.-108T>C group of alterations will improve fertility in the dairy cow.
Biochemical Journal | 2007
E. Linda R. Sheldrick; K. Derecka; Elaine Marshall; Evonne C. Chin; Louise Hodges; D. Claire Wathes; D. Robert E. Abayasekara; A.P.F. Flint
Arachidonic acid is a potential paracrine agent released by the uterine endometrial epithelium to induce PTGS2 [PG (prostaglandin)-endoperoxide synthase 2] in the stroma. In the present study, bovine endometrial stromal cells were used to determine whether PTGS2 is induced by arachidonic acid in stromal cells, and to investigate the potential role of PPARs (peroxisome-proliferator-activated receptors) in this effect. Arachidonic acid increased PTGS2 levels up to 7.5-fold within 6 h. The cells expressed PPARalpha and PPARdelta (also known as PPARbeta) (but not PPARgamma). PTGS2 protein level was increased by PPAR agonists, including polyunsaturated fatty acids, synthetic PPAR ligands, PGA1 and NSAIDs (non-steroidal anti-inflammatory drugs) with a time course resembling that of arachidonic acid. Use of agonists and antagonists indicated PPARalpha (but not PPARdelta or PPARgamma) was responsible for PTGS2 induction. PTGS2 induction by arachidonic acid did not require PG synthesis. PTGS2 levels were increased by the PKC (protein kinase C) activators 4beta-PMA and PGF(2alpha), and the effects of arachidonic acid, NSAIDs, synthetic PPAR ligands and 4beta-PMA were blocked by PKC inhibitors. This is consistent with PPAR phosphorylation by PKC. Induction of PTGS2 protein by 4beta-PMA in the absence of a PPAR ligand was decreased by the NF-kappaB (nuclear factor kappaB) inhibitors MG132 and parthenolide, suggesting that PKC acted through NF-kappaB in addition to PPAR phosphorylation. Use of NF-kappaB inhibitors allowed the action of arachidonic acid as a PPAR agonist to be dissociated from an effect through PKC. The results are consistent with the hypothesis that arachidonic acid acts via PPARalpha to increase PTGS2 levels in bovine endometrial stromal cells.
Molecular and Cellular Endocrinology | 2008
K. Derecka; E.L. Sheldrick; D C Wathes; D R E Abayasekara; A.P.F. Flint
Polyunsaturated fatty acids (PUFAs) induce COX-2 in bovine endometrial stromal cells through activation of peroxisome-proliferator-activated receptor alpha (PPARalpha). We have investigated alternative (PPAR-independent) pathways to COX-2 induction using a reporter construct driven by a COX-2 gene promoter sequence lacking a PPAR response element. This construct was induced by PUFAs, but not by PPAR agonists. PPAR-independent reporter gene expression occurred 6h after PPAR-dependent induction of the endogenous COX-2 gene. In contrast to PPAR-dependent COX-2 induction, which is not affected by NF-kappaB inhibitors, the PPAR-independent pathway was blocked by the NF-kappaB inhibitor MG132 or following deletion of NF-kappaB sites in the COX-2 promoter. The PPAR-independent effect of PUFA was mimicked by the PKC activators 4beta-PMA and prostaglandin F(2alpha), but was not blocked by the PKC inhibitor RO318425. The results demonstrate a pathway to the induction of COX-2 by PUFAs requiring NF-kappaB but not PPAR or PKC.
Metabolic Engineering | 2017
Katrin Schwarz; Alexander Grosse-Honebrink; K. Derecka; Carlo Rotta; Ying Zhang; Nigel P. Minton
Declining fossil fuel reserves, coupled with environmental concerns over their continued extraction and exploitation have led to strenuous efforts to identify renewable routes to energy and fuels. One attractive option is to convert glycerol, a by-product of the biodiesel industry, into n-butanol, an industrially important chemical and potential liquid transportation fuel, using Clostridium pasteurianum. Under certain growth conditions this Clostridium species has been shown to predominantly produce n-butanol, together with ethanol and 1,3-propanediol, when grown on glycerol. Further increases in the yields of n-butanol produced by C. pasteurianum could be accomplished through rational metabolic engineering of the strain. Accordingly, in the current report we have developed and exemplified a robust tool kit for the metabolic engineering of C. pasteurianum and used the system to make the first reported in-frame deletion mutants of pivotal genes involved in solvent production, namely hydA (hydrogenase), rex (Redox response regulator) and dhaBCE (glycerol dehydratase). We were, for the first time in C. pasteurianum, able to eliminate 1,3-propanediol synthesis and demonstrate its production was essential for growth on glycerol as a carbon source. Inactivation of both rex and hydA resulted in increased n-butanol titres, representing the first steps towards improving the utilisation of C. pasteurianum as a chassis for the industrial production of this important chemical.
Theriogenology | 1997
K. Derecka; Adam J. Ziecik
The receptors for LH, located in the gonadal tissues of the male and female, mediate stimulation of ovarian and testicular steroidogenesis by the pituitary. However, it is known that several animal and human nongonadal reproductive tissues also contain functional LH receptors. This study was undertaken to compare expression of LH/hCG receptor gene expression in gonadal and nongonadal reproductive tissue of the male and female fetal and neonatal pigs. We used reverse transcription-polymerase chain reaction (RT-PCR) to examine the onset of LH/hCG receptor gene expression in both gonadal and nongonadal tissues during ontogeny of the pig. According to our results the expression of LH/hCG receptor gene as measured by the presence in its extracellular domain starts between 30 and 40 d post coitum in the testis and between 40 and 48 d post coitum in the ovary. The expression of extragonadal LH/hCG receptor gene in the uterus occurred between Days 48 and 103 post coitum. When detected, the extracellular domain of LH/hCG receptor gene was expressed permanently both in gonadal and nongonadal porcine reproductive tissues. We also showed that LH/hCG receptors are expressed in the pig epididymis on Day 1 of neonatal life.
Reproduction | 2001
Kristina J. Demmers; K. Derecka; A.P.F. Flint
Biochemistry | 2009
Graham D. Balkwill; K. Derecka; Thomas P. Garner; Charlie Hodgman; A.P.F. Flint; Mark S. Searle
Journal of Endocrinology | 2001
S T Leung; Z R Cheng; E L Sheldrick; K. Derecka; A.P.F. Flint; D C Wathes