Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. J. Borkowski is active.

Publication


Featured researches published by K. J. Borkowski.


The Astrophysical Journal | 1999

DA 530: A Supernova Remnant in a Stellar Wind Bubble

T. L. Landecker; D. Routledge; Stephen P. Reynolds; R.J. Smegal; K. J. Borkowski; F. D. Seward

The high-latitude supernova remnant (SNR) DA 530 (G93.3+6.9), apparently a typical shell remnant, has highly polarized radio continuum emission and a very uniform circumferential magnetic field. We present new radio continuum (408 and 1420 MHz) and H I line observations, made with the Dominion Radio Astrophysical Observatory Synthesis Telescope, and we have made the first detection of X-ray emission from the SNR, using the ROSAT Position-Sensitive Proportional Counter. The SNR lies within a shell of H I, possibly created by an earlier stellar wind, whose kinematic distance is nominally 2.5 kpc but whose actual distance may be larger. The X-ray emission is extremely faint. A Raymond-Smith ionization-equilibrium model fits the data and suggests a very low density, ~0.05 cm-3, consistent with the occurrence of the supernova in a stellar wind cavity, but this model yields an explosion energy 100 times lower than the accepted value. A nonequilibrium shock model, incorporating a range of ionization timescales, is able to give more realistic physical parameters for the supernova remnant. On the balance of the evidence, we place DA 530 at a distance of 3.5 kpc, the largest distance permitted by the H I observations, where it lies 420 pc above the Galactic plane. The explosion, probably a Type Ia supernova, in a low-density cavity has resulted in weak X-ray emission and slow evolution. The explosion energy was 3.9 × 1050 ergs and the age is ~5000 years. The remnant, having swept up 3.9 M☉ in an ambient density of ~0.01 cm-3, is only now in the adiabatic phase, and this explains the absence of detected optical emission. Despite the low ambient density the efficiency of generation of synchrotron radio emission is ~0.4%, higher than in some historical SNRs. The ratio of radio to X-ray flux is about 100 times that for the remnant of SN 1006, which has comparable radio continuum properties. The very uniform magnetic field is not explained. DA 530 joins a small group of remnants at high Galactic latitude with unusual features, perhaps resulting from low ambient densities. Inhomogeneous nonequilibrium ionization models may be required for the interpretation of the X-ray emission from many other older SNRs.


The Astrophysical Journal | 2003

Ejecta Detection in Middle-Aged Large Magellanic Cloud Supernova Remnants 0548–70.4 and 0534–69.9

S. P. Hendrick; K. J. Borkowski; Stephen P. Reynolds

We have observed supernova remnants 0548-70.4 and 0534-69.9 in the Large Magellanic Cloud (LMC) with the Chandra X-Ray Observatory and report on the X-ray spectral analysis. Our images of 0548-70.4 and 0534-69.9 show bright central regions as well as brightened limbs. The X-ray spectra from the central regions exhibit enhanced metal abundances, in significant contrast to limb spectra, which show abundances consistent with the LMC interstellar medium (ISM). Considering the relatively old ages (~10,000 yr), these supernova remnants might be assumed to be in the Sedov phase, in which the X-ray spectra would be dominated by swept-up ISM material. The detection of high abundances in these old remnants is therefore surprising. Spectra from the limb regions were analyzed with Sedov models. The results were then used to account for blast wave emission seen in projection toward the central region and were added to a plane-parallel shock model for the reverse shock in the ejecta. We find elevated levels of iron, oxygen, magnesium, silicon, and sulfur in the bright central regions of each remnant. We introduce a new X-ray spectral shock model appropriate for heavy-element-dominated plasmas, in which electrons liberated by successive ionizations dominate the electron pool and modify the electron temperature profile. With this model, we find reverse-shock speeds of 420 km s-1 for 0548-70.4, 500 km s-1 for the northeast central region of 0534-69.9, and 360 km s-1 for its south central region. The elemental abundances favor a Type Ia supernova origin for both 0548-70.4 and 0534-69.9.


The Astrophysical Journal | 2003

Discovery of a New Pulsar Wind Nebula in the Large Magellanic Cloud

B. M. Gaensler; S. P. Hendrick; Stephen P. Reynolds; K. J. Borkowski

We present new high-resolution radio and X-ray observations of the supernova remnant (SNR) B0453-685 in the Large Magellanic Cloud, carried out with the Australia Telescope Compact Array and the Chandra X-Ray Observatory, respectively. Embedded in the SNR shell is a compact central nebula producing both flat-spectrum polarized radio emission and nonthermal X-rays; we identify this source as a pulsar wind nebula (PWN) powered by an unseen central neutron star. We present a new approach by which the properties of a SNR and PWN can be used to infer upper limits on the initial spin period and surface magnetic field of the unseen pulsar, and we conclude that this star was an initial rapid rotator with current properties similar to those of the Vela pulsar. As is the case for other similarly aged sources, there is currently an interaction taking place between the PWN and the SNRs reverse shock.


The Astrophysical Journal | 2004

Separating Thermal and Nonthermal X-Rays in Supernova Remnants. II. Spatially Resolved Fits to SN 1006 AD

Kristy K. Dyer; Stephen P. Reynolds; K. J. Borkowski

We present a spatially resolved spectral analysis of full ASCA observations of the remnant of the supernova of A.D. 1006. This remnant shows both nonthermal X-ray emission from bright limbs, generally interpreted as synchrotron emission from the loss-steepened tail of the nonthermal electron population also responsible for radio emission, and thermal emission from elsewhere in the remnant. In earlier work, we showed that the spatially integrated spectrum was well described by a theoretical synchrotron model in which shock acceleration of electrons was limited by escape, in combination with thermal models indicating high levels of iron from ejecta. Here we use new spatially resolved subsets of the earlier theoretical nonthermal models for the analysis. We find that emission from the bright limbs remains well described by those models and refine the values for the characteristic break frequency. We show that differences between the northeast and southwest nonthermal limbs are small, too small to account easily for the presence of the northeast limb, but not the southwest, in TeV γ-rays. Comparison of spectra of the nonthermal limbs and other regions confirms that simple cylindrically symmetric nonthermal models cannot describe the emission, and we put limits on nonthermal contributions to emission from the center and the northwest and southeast limbs. We can rule out solar-abundance models in all regions, finding evidence for elevated abundances. However, more sophisticated models will be required to accurately characterize these abundances.


The Astrophysical Journal | 2000

A Broadband X-Ray Study of Supernova Remnant 3C 397

Samar Safi-Harb; R. Petre; Keith A. Arnaud; Jonathan Wilmore Keohane; K. J. Borkowski; K. K. Dyer; Stephen P. Reynolds; John P. Hughes

We present a broadband imaging and spectral study of the radio-bright supernova remnant (SNR) 3C 397 with ROSAT, ASCA, and RXTE. A bright X-ray spot seen in the HRI image hints at the presence of a pulsar-powered component and gives this SNR a composite X-ray morphology. Combined ROSAT and ASCA imaging shows that the remnant is highly asymmetric, with its X-ray emission peaking at the western lobe. The hard-band images obtained with the ASCA Gas Imaging Spectrometer show that much of the hard X-ray emission arises from the western lobe, associated with the SNR shell, with little hard X-ray emission associated with the central hot spot. The spectrum from 3C 397 is heavily absorbed and dominated by thermal emission with emission lines evident from Mg, Si, S, Ar and Fe. Single-component models fail to describe the X-ray spectrum, and at least two components are required: a soft component characterized by a low temperature and a large ionization timescale, and a hard component required to account for the Fe-K emission line and characterized by a much lower ionization timescale. We use a set of nonequilibrium ionization (NEI) models (Borkowski et al., in preparation), and find that the fitted parameters are robust. The temperatures from the soft and hard components are ~0.2 keV and ~1.6 keV respectively. The corresponding ionization timescales n0t (n0 being the preshock hydrogen density) are ~6 × 1012 cm-3 s and ~6 × 1010 cm-3 s, respectively. The large n0t of the soft component suggests it is approaching ionization equilibrium; thus it can be fit equally well with a collisional equilibrium ionization model. The spectrum obtained with the Proportional Counter Array (PCA) of RXTE is contaminated by emission from the Galactic ridge, with only ~15% of the count rate originating from 3C 397 in the 5-15 keV range. The PCA spectrum allowed us to confirm the thermal nature of the hard X-ray emission. A third component originating from a pulsar-driven component is possible, but the contamination of the source signal by the Galactic ridge did not allow us to determine its parameters or find pulsations from any hidden pulsar. We discuss the X-ray spectrum in the light of two scenarios: a young ejecta-dominated remnant of a core-collapse SN, and a middle-aged SNR expanding in a dense ISM. In the first scenario, the hot component arises from the SNR shell, and the soft component from an ejecta-dominated component. 3C 397 would be a young SNR (a few thousand years old), but intermediate in dynamical age between the young historical shells (like Tycho or Kepler), and those that are well into the Sedov phase of evolution (like Vela). In the second scenario, the soft component represents the blast wave propagating in a dense medium, and the hard component is associated with hot gas encountering a fast shock, or arising from thermal conduction. In this latter scenario, the SNR would be ~twice as old, and transitioning into the radiative phase. The current picture we present in this paper is marginally consistent with this scenario, but it cannot be excluded. A spatially resolved spectroscopic study is needed to resolve the soft and hard components and differentiate between the two scenarios. Future Chandra and XMM data will also address the nature of the mysterious central (radio-quiet) X-ray spot.


The Astrophysical Journal | 2005

Chandra Observations of Shock Kinematics in Supernova Remnant 1987A

Svetozar A. Zhekov; Richard McCray; K. J. Borkowski; David N. Burrows; Sangwook Park

We report the first results from deep X-ray observations of the supernova remnant SNR 1987A with the Chandra LETG. Temperatures inferred from line ratios range from ~0.1 to 2 keV and increase with ionization potential. Expansion velocities inferred from X-ray line profiles range from ~300 to 1700 km s-1, much less than the velocities inferred from the radial expansion of the radio and X-ray images. We can account for these observations with a scenario in which the X-rays are emitted by shocks produced where the supernova blast wave strikes dense protrusions of the inner circumstellar ring, which are also responsible for the optical hot spots.


Astrophysics and Space Science | 2007

Chandra smells a RRAT

B. M. Gaensler; Maura Ann McLaughlin; Stephen P. Reynolds; K. J. Borkowski; N. Rea; Andrea Possenti; G. L. Israel; M. Burgay; F. Camilo; Shami Chatterjee; M. Kramer; A. G. Lyne; I. H. Stairs

Abstract “Rotating RAdio Transients” (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.


arXiv: Astrophysics | 2001

Spatially varying X-ray synchrotron emission in SN 1006

Kristy K. Dyer; Stephen P. Reynolds; K. J. Borkowski; Robert Petre

A growing number of both galactic and extragalactic supernova remnants show non-thermal (non-plerionic) emission in the X-ray band. New synchrotron models, realized as SRESC and SRCUT in XSPEC 11, which use the radio spectral index and flux as inputs and include the full single-particle emissivity, have demonstrated that synchrotron emission is capable of producing the spectra of dominantly non-thermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models deliver a much better-constrained separation between the thermal and non-thermal components, whereas combining an unconstrained powerlaw with modern thermal models can produce a range of acceptable fits. While synchrotron emission can be approximated by a powerlaw over small ranges of energy, the synchrotron spectrum is in fact steepening over the X-ray band. Having demonstrated that the integrated spectrum of SN 1006, a remnant dominated by non-thermal emission, is well ...


arXiv: Astrophysics | 2002

Low Frequency Insights into Supernova Remnants

Kristy K. Dyer; Stephen P. Reynolds; K. J. Borkowski; Namir E. Kassim; Christina Kaye Lacey

Low frequency observations at 330 and 74 MHz can provide new insights into supernova remnants (SNR). We can test theoretical predictions for spectral index variations. Nonlinear models of shock acceleration predict that the spectra from young SNR should be slightly concave rather than power laws — flattening toward higher energies. However, few SNR are bright and compact enough to be studied at millimeter wavelengths, restricting studies to the small range from 6 to 20 cm (a factor of 1.7 in electron energies). Observations at 330 MHz increase the electron energy baseline to a factor of 4, while providing sensitivity to larger spatial scales that are resolved out by centimeter-wavelength interferometers. Such observations can also separate thermal from nonthermal emission and detect excess free-free absorption associated with cool gas in remnants. Wide field images also provide an efficient census of both thermal and nonthermal sources over a large region.


YOUNG SUPERNOVA REMNANTS: Eleventh Astrophysics Conference | 2001

Maximum energies of shock-accelerated electrons in supernova remnants in the large magellanic cloud

S. P. Hendrick; Stephen P. Reynolds; K. J. Borkowski

Some supernova-remnant X-ray spectra show evidence for synchrotron emission from the extension of the electron spectrum producing radio synchrotron emission. For any remnant, if the extrapolated radio flux exceeds the observed X-ray flux (thermal or nonthermal), a rolloff of the relativistic-electron energy distribution must occur below X-ray emitting energies. We have studied the X-ray emission from a sample of 11 remnants in the Large Magellanic Cloud to constrain this rolloff energy. We assume that the electron distribution is a power law with an exponential cutoff at some Emax and radiates in a uniform magnetic field. If the radio flux and spectral index are known, this simple model for the synchrotron contribution depends on only one parameter which relates directly to Emax. Here we have modeled the X-ray spectra by adding a component for thermal radiation of a Sedov blast wave to the synchrotron model. For all 11 supernova remnants in this sample, the limits for Emax range between 10 and 70 TeV (for...

Collaboration


Dive into the K. J. Borkowski's collaboration.

Top Co-Authors

Avatar

Stephen P. Reynolds

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kristy K. Dyer

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

S. P. Hendrick

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

K. K. Dyer

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

R. Petre

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Richard McCray

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert Petre

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Kaye Lacey

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge