Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K. Poels is active.

Publication


Featured researches published by K. Poels.


Radiotherapy and Oncology | 2013

Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: A patient simulation study

Tom Depuydt; K. Poels; Dirk Verellen; Benedikt Engels; C. Collen; Chloe Haverbeke; T. Gevaert; Nico Buls; Gert Van Gompel; Truus Reynders; M Duchateau; Koen Tournel; M. Boussaer; Femke Steenbeke; Frederik Vandenbroucke; Mark De Ridder

PURPOSE To have an initial assessment of the Vero Dynamic Tracking workflow in clinical circumstances and quantify the performance of the tracking system, a simulation study was set up on 5 lung and liver patients. METHODS AND MATERIALS The preparatory steps of a tumor tracking treatment, based on fiducial markers implanted in the tumor, were executed allowing pursuit of the tumor with the gimbaled linac and monitoring X-rays acquisition, however, without activating the 6 MV beam. Data were acquired on workflow time-efficiency, tracking accuracy and imaging exposure. RESULTS The average time between the patient entering the treatment room and the first treatment field was about 9 min. The time for building the correlation model was 3.2 min. Tracking errors of 0.55 and 0.95 mm (1σ) were observed in PAN/TILT direction and a 2D range of 3.08 mm. A skin dose was determined of 0.08 mGy/image, with a source-to-skin distance of 900 mm and kV exposure of 1 mAs. On average 1.8 mGy/min kV skin dose was observed for 1 Hz monitoring. CONCLUSION The Vero tracking solution proved to be fully functional and showed performance comparable with other real-time tracking systems.


Radiotherapy and Oncology | 2014

Treating patients with real-time tumor tracking using the Vero gimbaled linac system: Implementation and first review

Tom Depuydt; K. Poels; Dirk Verellen; Benedikt Engels; C. Collen; Manuela Buleteanu; Robbe Van den Begin; M. Boussaer; M Duchateau; T. Gevaert; Guy Storme; Mark De Ridder

PURPOSE To report on the first clinical application of a real-time tumor tracking (RTTT) solution based on the Vero SBRT gimbaled linac system for treatment of moving tumors. METHODS AND MATERIALS A first group of 10 SBRT patients diagnosed with NSCLC or oligometastatic disease in lung or liver was treated with the RTTT technique. The PTV volumes and OAR exposure were benchmarked against the widely used ITV approach. Based on data acquired during execution of RTTT treatments, a first review was performed of the process. RESULTS The 35% PTV volume reduction with RTTT of the studied single lesions SBRT irradiations of small target volumes is expected to result in a small (<1%) reduction of lung or liver NTCP. A GTV-PTV margin of 5.0mm was applied for treatment planning of RTTT. From patient data on residual geometric uncertainties, a CTV-PTV margin of 3.2mm was calculated. Reduction of the GTV-PTV margin below 5.0mm without better understanding of biological definition of tumor boundaries was discouraged. Total treatment times were reduced to 34.4 min on average. CONCLUSION A considerable PTV volume reduction was achieved applying RTTT and time efficiency for respiratory correlated SBRT was reestablished with Vero RTTT.


Radiotherapy and Oncology | 2016

A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking.

Emma Colvill; Jeremy T. Booth; Simeon Nill; Martin F. Fast; James L. Bedford; Uwe Oelfke; Mitsuhiro Nakamura; P.R. Poulsen; E. Worm; Rune Hansen; T. Ravkilde; Jonas Scherman Rydhög; Tobias Pommer; Per Munck af Rosenschöld; S. Lang; Matthias Guckenberger; Christian Groh; Christian Herrmann; Dirk Verellen; K. Poels; L Wang; Michael Hadsell; Thilo Sothmann; Oliver Blanck; P Keall

Purpose A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. Results For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. Conclusions The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.


Radiotherapy and Oncology | 2013

A complementary dual-modality verification for tumor tracking on a gimbaled linac system

K. Poels; Tom Depuydt; Dirk Verellen; Benedikt Engels; C. Collen; Steffen Heinrich; M Duchateau; Truus Reynders; K Leysen; M. Boussaer; Femke Steenbeke; Koen Tournel; T. Gevaert; Guy Storme; Mark De Ridder

BACKGROUND AND PURPOSE For dynamic tracking of moving tumors, robust intra-fraction verification was required, to assure that tumor motion was properly managed during the course of radiotherapy. A dual-modality verification system, consisting of an on-board orthogonal kV and planar MV imaging device, was validated and applied retrospectively to patient data. METHODS AND MATERIALS Real-time tumor tracking (RTTT) was managed by applying PAN and TILT angular corrections to the therapeutic beam using a gimbaled linac. In this study, orthogonal X-ray imaging and MV EPID fluoroscopy was acquired simultaneously. The tracking beam position was derived from respectively real-time gimbals log files and the detected field outline on EPID. For both imaging modalities, the moving target was localized by detection of an implanted fiducial. The dual-modality tracking verification was validated against a high-precision optical camera in phantom experiments and applied to clinical tracking data from a liver and two lung cancer patients. RESULTS Both verification modalities showed a high accuracy (<0.3mm) during validation on phantom. Marker detection on EPID was influenced by low image contrast. For the clinical cases, gimbaled tracking showed a 90th percentile error (E90) of 3.45 (liver), 2.44 (lung A) and 3.40 mm (lung B) based on EPID fluoroscopy and good agreement with XR-log file data by an E90 of 3.13, 1.92 and 3.33 mm, respectively, during beam on. CONCLUSION Dual-modality verification was successfully implemented, offering the possibility of detailed reporting on RTTT performance.


Physics in Medicine and Biology | 2016

Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms.

Thilo Sothmann; Oliver Blanck; K. Poels; René Werner; T. Gauer

The purpose of this study was to evaluate and compare two clinical tracking systems for radiosurgery with regard to their dosimetric and geometrical accuracy in liver SBRT: the robot-based CyberKnife and the gimbal-based Vero. Both systems perform real-time tumour tracking by correlating internal tumour and external surrogate motion. CyberKnife treatment plans were delivered to a high resolution 2D detector array mounted on a 4D motion platform, with the platform simulating (a) tumour motion trajectories extracted from the corresponding CyberKnife predictor log files and (b) the tumour motion trajectories with superimposed baseline-drift. Static reference and tracked dose measurements were compared and dosimetric as well as geometrical uncertainties analyzed by a planning structure-based evaluation. For (a), γ-passing rates inside the CTV (γ-criteria of 1% / 1 mm) ranged from 95% to 100% (CyberKnife) and 98% to 100% (Vero). However, dosimetric accuracy decreases in the presence of the baseline-drift. γ-passing rates for (b) ranged from 26% to 92% and 94% to 99%, respectively; i.e. the effect was more pronounced for CyberKnife. In contrast, the Vero system led to maximum dose deviations in the OAR between  +1.5 Gy to +6.0 Gy (CyberKnife: +0.5 Gy to +3.5 Gy). Potential dose shifts were interpreted as motion-induced geometrical tracking errors. Maximum observed shift ranges were  -1.0 mm to  +0.7 mm (lateral) /-0.6 mm to +0.1 mm (superior-inferior) for CyberKnife and  -0.8 mm to +0.2 mm /-0.8 mm to +0.4 mm for Vero. These values illustrate that CyberKnife and Vero provide high precision tracking of regular breathing patterns. Even for the modified motion trajectory, the obtained dose distributions appear to be clinical acceptable with regard to literature QA γ-criteria of 3% / 3 mm.


Radiotherapy and Oncology | 2015

A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: A focus on geometrical accuracy in lung and liver cancer patients.

K. Poels; J. Dhont; Dirk Verellen; Oliver Blanck; Floris Ernst; Jef Vandemeulebroucke; Tom Depuydt; Guy Storme; Mark De Ridder

PURPOSE A head-to-head comparison of two clinical correlation models with a focus on geometrical accuracy for internal tumor motion estimation during real-time tumor tracking (RTTT). METHODS AND MATERIALS Both the CyberKnife (CK) and the Vero systems perform RTTT with a correlation model that is able to describe hysteresis in the breathing motion. The CK dual-quadratic (DQ) model consists of two polynomial functions describing the trajectory of the tumor for inhale and exhale breathing motion, respectively. The Vero model is based on a two-dimensional (2D) function depending on position and speed of the external breathing signal to describe a closed-loop tumor trajectory. In this study, 20 s of internal motion data, using an 11 Hz (on average) full fluoroscopy (FF) sequence, was used for training of the CK and Vero models. Further, a subsampled set of 15 internal tumor positions (15p) equally spread over the different phases of the breathing motion was used for separate training of the CK DQ model. Also a linear model was trained using 15p and FF tumor motion data. Fifteen liver and lung cancer patients, treated on the Vero system with RTTT, were retrospectively evaluated comparing the CK FF, CK 15p and Vero FF models using an in-house developed simulator. The distance between estimated target position and the tumor position localized by X-ray imaging was measured in the beams-eye view (BEV) to calculate the 95th percentile BEV modeling errors (ME(95,BEV)). Additionally, the percentage of ME(95,BEV) smaller than 5 mm (P(5mm)) was determined for all correlation models. RESULTS In general, no significant difference (p>0.05, paired t-test) was found between the CK FF and Vero models. Based on patient-specific evaluation of the geometrical accuracy of the linear, CK DQ and Vero correlation models, no statistical necessity (p>0.05, two-way ANOVA) of including hysteresis in correlation models was proven, although during inhale breathing motion, the linear model resulted in a decreased P(5mm) with 5-6% compared to both the DQ CK and Vero models. CONCLUSION Dual-quadratic CyberKnife and 2D Vero correlation models were interchangeable in terms of geometrical accuracy with the CK linear ME(95,BEV)=4.1 mm, CK dual-quadratic ME(95,BEV)=3.9 mm and Vero ME(95,BEV)=3.7 mm, when modeled with FF sequence. CK DQ modeling based on 15p acquired in 20 s may lead to problems for internal motion estimation.


Radiotherapy and Oncology | 2014

Improving the intra-fraction update efficiency of a correlation model used for internal motion estimation during real-time tumor tracking for SBRT patients: Fast update or no update?

K. Poels; Tom Depuydt; Dirk Verellen; T. Gevaert; J. Dhont; M Duchateau; M. Burghelea; M. Boussaer; Femke Steenbeke; C. Collen; Benedikt Engels; Guy Storme; Mark De Ridder

BACKGROUND AND PURPOSE For tumor tracking, a correlation model is used to estimate internal tumor position based on external surrogate motion. When patients experience an internal/external surrogate drift, an update of the correlation model is required to continue tumor tracking. In this study, the accuracy of the internal tumor position estimation for both the clinical available update at discrete points in time (rebuild) and an in-house developed non-clinical online update approach was investigated. METHODS A dynamic phantom with superimposed baseline drifts and 14 SBRT patients, treated with real-time tumor tracking (RTTT) on the Vero system, were retrospectively simulated for three update scenarios, respectively no update, clinical rebuild and 0.5 Hz automated online update of the correlation model. By comparing the target positions based on 0.5 Hz verification X-ray images with the estimated internal tumor positions regarding all three update scenarios, 95th percentile modeling errors (ME95), incidences of full geometrical coverage of the CTV by a 5 mm extended PTV (P₅mm) and population-based PTV margins were calculated. Further, the treatment time reduction was estimated when switching from the clinical rebuild approach to the online correlation model update. RESULTS For dynamic phantom motion with baseline drifts up to 0.4 mm/min, a 0.5 Hz intra-fraction update showed a similar accuracy in terms of ME95 and P5 mm compared to clinical rebuild. For SBRT patients treated on Vero with RTTT, accuracy was improved by 0.5 Hz online update compared to the clinical rebuild protocol, yielding smaller PTV margins (from 3.2 mm to 2.7 mm), reduced ME95,3D (from 4.1 mm to 3.4 mm) and an increased 5th percentile P5 mm (from 90.7% to 96.1%) for the entire patient group. Further, 80% of treatment sessions were reduced in time with on average 5.5 ± 4.1(1 SD)min. CONCLUSION With a fast (0.5 Hz) automated online update of the correlation model, an efficient RTTT workflow with improved geometrical accuracy was obtained.


International Journal of Radiation Oncology Biology Physics | 2015

Geometric Verification of Dynamic Wave Arc Delivery With the Vero System Using Orthogonal X-ray Fluoroscopic Imaging

M. Burghelea; Dirk Verellen; K. Poels; T. Gevaert; Tom Depuydt; Koen Tournel; Cecilia Hung; V. Simon; Masahiro Hiraoka; Mark De Ridder

PURPOSE The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. METHODS AND MATERIALS A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. RESULTS In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. CONCLUSIONS An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°.


Radiotherapy and Oncology | 2015

Feasibility of markerless tumor tracking by sequential dual-energy fluoroscopy on a clinical tumor tracking system

J. Dhont; Dirk Verellen; K. Poels; Koen Tournel; M. Burghelea; T. Gevaert; C. Collen; Benedikt Engels; Robbe Van den Begin; Nico Buls; Gert Van Gompel; Toon Van Cauteren; Guy Storme; Mark De Ridder

A novel approach to dual-energy imaging for markerless tumor tracking was proposed consisting of sequential dual-energy fluoroscopy, omitting the need for fast-switching kV generators. The implementation of this approach on a clinical tumor tracking system and its efficacy is shown feasible through optimization of the imaging parameters.


Radiotherapy and Oncology | 2016

Motion management during SBRT for oligometastatic cancer: Results of a prospective phase II trial

Robbe Van den Begin; Benedikt Engels; M. Boussaer; J. Dhont; M. Burghelea; Tom Depuydt; K. Poels; C. Collen; T. Gevaert; Dirk Verellen; Guy Storme; Johan De Mey; Mark De Ridder

PURPOSE To optimize the local control of stereotactic body radiotherapy (SBRT) using the Vero-SBRT system and respiratory motion management in patients with oligometastatic cancer. MATERIALS AND METHODS Patients with five or less metastases were eligible. In metastases with significant motion, a fiducial was implanted for Vero dynamic tracking. For other metastases an internal target volume (ITV) was defined to encompass the respiratory tumor trajectory. A dose of 50Gy in 10 fractions was prescribed on the 80% isodose line. RESULTS We treated 87 metastases in 44 patients, with colorectal cancer as the most common primary origin (65.9%). Metastatic sites were mainly lung (n=62) and liver (n=17). Twenty-seven metastases were treated with dynamic tracking, the remaining 60 using the ITV-concept. Three patients (7%) experienced grade ⩾3 toxicity. After a median follow-up of 12months, the overall one-year local control (LC) amounted to 89% (95% CI 77-95%), with corresponding values of 90% and 88% for the metastases irradiated with the ITV-approach and dynamic tracking, respectively. Median progression-free survival reached 6.5months, one-year overall survival 95%. CONCLUSIONS SBRT with proper respiratory motion management resulted in a high LC and an acceptable toxicity profile in oligometastatic cancer patients.

Collaboration


Dive into the K. Poels's collaboration.

Top Co-Authors

Avatar

Tom Depuydt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

D. Verellen

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

T. Gevaert

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

M. De Ridder

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

Benedikt Engels

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Koen Tournel

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

C. Collen

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Mark De Ridder

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

M Duchateau

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

M. Boussaer

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge